Mark W. Dowley
Solid State Communications
The current-voltage characteristics of a single tunneling barrier are studied on a two-dimensional electron gas at millikelvin temperatures. As the impedance of the leads is gradually increased, the zero-bias differential resistance of the barrier increases and the tunneling current at low bias is suppressed (Coulomb blockade) in a power-law fashion. The data are in a quantitative agreement with the model in which quantum fluctuations of the environment enhance the tunneling rate. The linear I-V found at the lowest bias signalizes the breakdown of the simple theory, probably due to disorder. © 1993 The American Physical Society.
Mark W. Dowley
Solid State Communications
A. Krol, C.J. Sher, et al.
Surface Science
Revanth Kodoru, Atanu Saha, et al.
arXiv
A. Reisman, M. Berkenblit, et al.
JES