Salvatore Certo, Anh Pham, et al.
Quantum Machine Intelligence
Let ℂ denote the complex numbers and ℒ denote the ring of complex-valued Laurent polynomial functions on ℂ \ {0}. Furthermore, we denote by ℒR, ℒN the subsets of Laurent polynomials whose restriction to the unit circle is real, nonnegative, respectively. We prove that for any two Laurent polynomials P1, P2 ∈ ℒN, which have no common zeros in ℂ \ {0} there exists a pair of Laurent polynomials Q1, Q2 ∈ ℒN satisfying the equation Q1P1 + Q2P2 = 1. We provide some information about the minimal length Laurent polynomials Q1 and Q2 with these properties and describe an algorithm to compute them. We apply this result to design a conjugate quadrature filter whose zeros contain an arbitrary finite subset Λ ⊂ ℂ \ {0} with the property that for every λ, μ ∈ Λ, λ ≠ μ implies λ ≠ -μ and λ ≠ -1/μ̄.
Salvatore Certo, Anh Pham, et al.
Quantum Machine Intelligence
John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
Amir Ali Ahmadi, Raphaël M. Jungers, et al.
SICON
Jonathan Ashley, Brian Marcus, et al.
Ergodic Theory and Dynamical Systems