Aditya Malik, Nalini Ratha, et al.
CAI 2024
The one-against-all reduction from multiclass classification to binary classification is a standard technique used to solve multiclass problems with binary classifiers. We show that modifying this technique in order to optimize its error transformation properties results in a superior technique, both experimentally and theoretically. This algorithm can also be used to solve a more general classification problem "multi-label classification," which is the same as multiclass classification except that it allows multiple correct labels for a given example. Copyright © 2005, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025