Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Disciplined, data-driven discovery has an important role for identifying vulnerable populations. We summarise three recent projects that applied techniques from anomalous pattern detection in order to automatically identify sub-populations that had higher (or lower) rates of outcomes such as child mortality. This type of exploratory analysis can be viewed as complementing human-driven confirmation analysis. Scanning for vulnerable sub-populations that have anomalously high (or low) outcomes can be done directly on the data as a form of stratification. Alternatively, black-box prediction models can be scanned for predictive bias where the observed outcomes of a sub-population are much higher than predicted. In either form, subset scanning is a tool for better understanding data at a sub-population level rather than at aggregate or individual levels.
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024