Characterization of a next generation step-and-scan system
Timothy J. Wiltshire, Joseph P. Kirk, et al.
SPIE Advanced Lithography 1998
We consider the following long-range percolation model: an undirected graph with the node set {0, 1, ..., N}d, has edges (x, y) selected with probability ≈ β/||x - y||s if ||x - y|| > 1, and with probability 1 if ||x - y|| = 1, for some parameters β, s > 0. This model was introduced by Benjamini and Berger, who obtained bounds on the diameter of this graph for the one-dimensional case d = 1 and for various values of s, but left cases s = 1, 2 open. We show that, with high probability, the diameter of this graph is Θ(log N/log log N) when s = d, and, for some constants 0 < η1 < η2 < 1, it is at most Nη2 when s = 2d, and is at least Nη1 when d = 1, s = 2, β < 1 or when s > 2d. We also provide a simple proof that the diameter is at most logO(1) N with high probability, when d < s < 2d, established previously in [2]. © 2002 Wiley Periodicals, Inc.
Timothy J. Wiltshire, Joseph P. Kirk, et al.
SPIE Advanced Lithography 1998
F.M. Schellenberg, M. Levenson, et al.
BACUS Symposium on Photomask Technology and Management 1991
John S. Lew
Mathematical Biosciences
Fernando Martinez, Juntao Chen, et al.
AAAI 2025