Chai Wah Wu
Linear Algebra and Its Applications
We explicitly obtain, for K(x, y) totally positive, a best choice of functions u1, ..., un and v1, ..., vn for the problem minui, vi (∝01 (∝01 |K(x, y) - ∑i = 1, n ui(x) vi(y)| dyp dx) 1 p, where ui ε{lunate} Lp[0, 1], vi ε{lunate} L1[0, 1], i = 1, ..., n, and p ε{lunate} [1, ∞]. We show that an optimal choice is determined by certain sections K(x, ξ1), ..., K(x, ξn), and K(τ1, y), ..., K(τn, y) of the kernel K. We also determine the n-widths, both in the sense of Kolmogorov and of Gel'fand, and identify optimal subspaces, for the set Kr,v = {f(x) = ∑ i=1 raiki(x) + ∫ 0 1K(x,y)h(y)dy, (a1, ..., ar)ε{lunate}Rr, {norm of matrix}h{norm of matrix}p≤1}, as a subset of Lq[0, 1], with either p = ∞ and q ε{lunate} [1, ∞], or p ε{lunate} [1, ∞] and q = 1, where {k1(x), ..., kr(x), K(x, y)} satisfy certain restrictions. A particular example is the ball Br,v = {f} in the Sobolev space. © 1978.
Chai Wah Wu
Linear Algebra and Its Applications
John S. Lew
Mathematical Biosciences
Daniel J. Costello Jr., Pierre R. Chevillat, et al.
ISIT 1997
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence