K.A. Chao
Physical Review B
We demonstrate a catalyst-free growth technique to directly integrate III-V semiconducting nanowires on silicon using selective area epitaxy within a nanotube template. The nanotube template is selectively filled by homo- as well as heteroepitaxial growth of nanowires with the morphology entirely defined by the template geometry. To demonstrate the method single-crystalline InAs wires on Si as well as InAs-InSb axial heterostructure nanowires are grown within the template. The achieved heterointerface is very sharp and confined within 5-6 atomic planes which constitutes a primary advantage of this technique. Compared to metal-catalyzed or self-catalyzed nanowire growth processes, the nanotube template approach does not suffer from the often observed intermixing of (hetero-) interfaces and non-intentional core-shell formation. The sequential deposition of different material layers within a nanotube template can therefore serve as a general monolithic integration path for III-V based electronic and optoelectronic devices on silicon. © 2013 IOP Publishing Ltd.
K.A. Chao
Physical Review B
Mark W. Dowley
Solid State Communications
Ming L. Yu
Physical Review B
Zelek S. Herman, Robert F. Kirchner, et al.
Inorganic Chemistry