True 3-D displays for avionics and mission crewstations
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
The structural relaxation of a high-angle grain boundary at elevated temperatures has been simulated by molecular dynamics with the use of a bicrystal model composed of 399 atoms. The system studied was a =5 (36.9°), [001] tilt boundary with interatomic interactions given by the empirical Johnson potential for -Fe. In the presence of an extrinsic vacancy, the boundary structure was found to be stable up to temperatures of at least two-thirds the melting temperature. Vacancy jumps, confined preferentially to within the grain-boundary core, were observed. Also observed were the thermal activation of vacancy-interstitial pairs, and with increasing temperatures a variety of more complicated vacancy-jump sequences. The simulation data are relevant to the understanding of fast diffusion along grain boundaries, the kinetics of which is analyzed and discussed in the following paper. © 1984 The American Physical Society.
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
Shu-Jen Han, Dharmendar Reddy, et al.
ACS Nano
J. Paraszczak, J.M. Shaw, et al.
Micro and Nano Engineering
Thomas H. Baum, Carl E. Larson, et al.
Journal of Organometallic Chemistry