Abu Sebastian, Tomas Tuma, et al.
Nature Communications
Machine learning has emerged as the dominant tool for implementing complex cognitive tasks that require supervised, unsupervised, and reinforcement learning. While the resulting machines have demonstrated in some cases even superhuman performance, their energy consumption has often proved to be prohibitive in the absence of costly supercomputers. Most state-of-the-art machine-learning solutions are based on memoryless models of neurons. This is unlike the neurons in the human brain that encode and process information using temporal information in spike events. The different computing principles underlying biological neurons and how they combine together to efficiently process information is believed to be a key factor behind their superior efficiency compared to current machine-learning systems.
Abu Sebastian, Tomas Tuma, et al.
Nature Communications
Irem Boybat, S. R. Nandakumar, et al.
NVMTS 2018
Iason Giannopoulos, Abu Sebastian, et al.
IEDM 2018
Michele Martemucci, Benedikt Kersting, et al.
ISCAS 2021