Fan Zhang, Junwei Cao, et al.
IEEE TETC
We present a general method for worst-case limit kinematic tolerance analysis: computing the range of variation in the kinematic function of a mechanism from its part tolerance specifications. The method covers fixed and multiple contact mechanisms with parametric or geometric part tolerances. We develop a new model of kinematic variation, called kinematic tolerance space, that generalizes the configuration space representation of nominal kinematic function. Kinematic tolerance space captures quantitative and qualitative variations in kinematic function due to variations in part shape and part configuration. We derive properties of kinematic tolerance space that express the relationship between the nominal kinematics of mechanisms and their kinematic variations. Using these properties, we develop a practical kinematic tolerance space computation algorithm for planar pairs with two degrees of freedom. Copyright © 1996 Elsevier Science Ltd.
Fan Zhang, Junwei Cao, et al.
IEEE TETC
Minkyong Kim, Zhen Liu, et al.
INFOCOM 2008
Maciel Zortea, Miguel Paredes, et al.
IGARSS 2021
Reena Elangovan, Shubham Jain, et al.
ACM TODAES