Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Recent work has studied the extent to which large language models (LLMs) can function as planners: given a task, generate a plan. We investigate whether LLMs can serve as generalized planners: given a domain and training tasks, generate a program that efficiently produces plans for other tasks in the domain. In particular, we consider PDDL domains and use GPT-4 to synthesize Python programs. We also consider (1) Chain-of-Thought (CoT) summarization, where the LLM is prompted to summarize the domain and propose a strategy in words before synthesizing the program; and (2) automated debugging, where the program is validated with respect to the training tasks, and in case of errors, the LLM is re-prompted with four types of feedback. We evaluate this approach in seven PDDL domains and compare it to three ablations and four baselines. Overall, we find that GPT-4 is a surprisingly powerful generalized planner. We also conclude that automated debugging is very important, that CoT summarization has non-uniform impact, that GPT-4 is far superior to GPT-3.5, and that just two training tasks are often sufficient for strong generalization.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Chen-chia Chang, Wan-hsuan Lin, et al.
ICML 2025
Gang Liu, Michael Sun, et al.
ICLR 2025