David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
This note continues work by the Lehmers [3], Gunderson [2], Granville and Monagan [1], and Tanner and Wagstaff [6], producing lower bounds for the prime exponent p in any counterexample to the first case of Fermat’s Last Theorem. We improve the estimate of the number of residues r mod p2such that rP= r mod p2and thereby improve the lower bound on p to 7.568 x 1017. © 1990 American Mathematical Society.
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
Don Coppersmith, Ephraim Feig, et al.
IEEE TSP
Juliann Opitz, Robert D. Allen, et al.
Microlithography 1998
Amir Ali Ahmadi, Raphaël M. Jungers, et al.
SICON