Saurabh Paul, Christos Boutsidis, et al.
JMLR
Automatic segmentation of renal tumors and surrounding anatomy in computed tomography (CT) scans is a promising tool for assisting radiologists and surgeons in their efforts to study these scans and improve the prospect of treating kidney cancer. We describe our approach, which we used to compete in the 2021 Kidney and Kidney Tumor Segmentation (KiTS21) challenge. Our approach is based on the successful 3D U-Net architecture with our added innovations, including the use of transfer learning, an unsupervised regularized loss, custom postprocessing, and multi-annotator ground truth that mimics the evaluation protocol. Our submission has reached the 2nd place in the KiTS21 challenge.
Saurabh Paul, Christos Boutsidis, et al.
JMLR
C.A. Micchelli, W.L. Miranker
Journal of the ACM
Joxan Jaffar
Journal of the ACM
Kenneth L. Clarkson, Elad Hazan, et al.
Journal of the ACM