Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Probabilistic forecasting of high dimensional multivariate time series is a notoriously challenging task, both in terms of computational burden and distribution modeling. Most previous work either makes simplifying distribution assumptions or abandons modeling cross-series correlations. A promising line of work exploits scalable matrix factorization for latent-space forecasting, but is limited to linear relationships, is not probabilistic, and not trainable end-to-end. We introduce a novel probabilistic multivariate forecasting method addressing these shortcomings, and demonstrate improved performance on a variety of multivariate datasets.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024
Shubhi Asthana, Pawan Chowdhary, et al.
INFORMS 2020