Temporal logics and model checking for *fairly* correct systems

Hagen Völzer\(^1\)

joint work with Daniele Varacca\(^2\)

\(^1\)Lübeck University, Germany

\(^2\)Imperial College London, UK

LICS 2006
Introduction

Five Philosophers

SPEC

• mutual exclusion and
• starvation-freedom

• System is not correct
 L and R may ‘conspire’ against Me
• However, system is *almost* correct
 ‘most’ runs satisfy SPEC
Generic Relaxations of Correctness

Let S be the set of all runs of the system.

Almost Correct

- SPEC is probabilistically large
 - i.e. $\mu(SPEC) = 1$
- needs probability measure μ on S

Fairly Correct (New!)

- SPEC is topologically large
 - i.e. SPEC is a co-meager set in the natural topology on S
- there is a fairness assumption F for S such that $S \cap F \subseteq SPEC$
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Road Map

Fairness and Topological Largeness

Fairness: Examples
Fairness: Language-theoretic Characterisation
Fairness: Topological Characterisation

Topological vs Probabilistic Largeness

Similarities
Separation
Coincidence

Model Checking for Fairly Correct Systems

Linear Time
Branching Time
Complete Fairness
Strong Fairness

- Unwanted: e.g. \((ac)\omega\)
- Assumption: Strong fairness wrt transition \(t\):
 \(\square \lozenge enabled(t) \implies \square \lozenge taken(t)\)
k-Fairness (E. Best 84)

- Unwanted: “Conspiracy”
- Assumption: k-Fairness wrt t:
 $\square \Diamond enabled(k, t) \Rightarrow \square \Diamond taken(t)$

\[\begin{align*}
\text{L} & \quad \text{Me} \quad \text{R} \\
< k & \\
\text{t} & \quad \text{t}
\end{align*}\]
\(\infty\)-Fairness

- \(k\)-Fairness wrt \(t\): \(\Box \lozenge enabled(k, t) \implies \Box \lozenge taken(t)\)
- \(\infty\)-Fairness wrt \(t\): \(\Box enabled(\infty, t) \implies \Box \lozenge taken(t)\)
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Setting

- Run: finite or infinite sequence of states:
 \(x \in \Sigma^\infty = \Sigma^+ \cup \Sigma^\omega \) (Alternative \(x \in \Sigma^\omega \))
 - \(\alpha^\uparrow = \{ x \in \Sigma^\infty \mid \alpha \text{ is prefix of } x \} \)
 - \(x^\downarrow = \{ \alpha \in \Sigma^+ \mid \alpha \text{ is prefix of } x \} \)
• Run: finite or infinite sequence of states: \(x \in \Sigma^\infty = \Sigma^+ \cup \Sigma^\omega \) (Alternative \(x \in \Sigma^\omega \))
 - \(\alpha^\uparrow = \{x \in \Sigma^\infty \mid \alpha \text{ is prefix of } x\} \)
 - \(x^\downarrow = \{\alpha \in \Sigma^+ \mid \alpha \text{ is prefix of } x\} \)

• Temporal property: \(E \subseteq \Sigma^\infty \)

• System \(S \subseteq \Sigma^\infty \) all runs generated by a given transition system
\[\infty\text{-Fairness wrt a State } s \in \Sigma \]

\[\square \text{enabled}_S(\infty, s) \iff \square \Diamond \text{taken}(s) \]
\(\infty \)-Fairness wrt a Word \(w \in \Sigma^+ \)

\[\square enabled_S(\infty, w) \implies \square \Diamond taken(w) \]
(Memoryless) ∞-Fairness wrt $Q \subseteq \Sigma^+$

$$\square \text{enabled}_S(\infty, Q) \implies \square \Diamond \text{taken}(Q)$$
Memoryful ∞-Fairness wrt $Q \subseteq \Sigma^+$

□ $\text{live}_S(Q) \iff \Box \Diamond Q$

Examples:
- $Q = \Sigma^+ w$ (∞-Fairness wrt w)
- $Q = "\#a = \#b"$ (truly memoryful)
Defining Fairness

Definition

\[E \subseteq \Sigma^\infty \] is a fairness property for \(S \) iff it contains a property of the form \(\Box \text{live}_S(Q) \implies '\Box \Diamond Q' \) for some \(Q \subseteq \Sigma^+ \).
Road Map

Fairness and Topological Largeness
- Fairness: Examples
- Fairness: Language-theoretic Characterisation
- Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
- Similarities
- Separation
- Coincidence

Model Checking for Fairly Correct Systems
- Linear Time
- Branching Time
- Complete Fairness
Scott Topology on S

- Basic open set: α^\uparrow for $\alpha \in \Sigma^+ \cap S$
Scott Topology on S

- **Basic open set**: α^{\uparrow} for $\alpha \in \Sigma^{+} \cap S$
- **Open set**: arbitrary union of basic open sets (*guarantee* relative to S)
- **Closed set**: complement of an open set (*safety* relative to S)
Dense Set L

- L intersects every (basic) open set
- $L = \text{Liveness}$ relative to S
- (S, L) is machine-closed
Dense Set L

- L intersects every (basic) open set
- $= Liveness$ relative to S
- $\iff (S, L)$ is *machine-closed*
Dense Set L

- L intersects every (basic) open set
- $= Liveness$ relative to S
- $\iff (S, L)$ is $machine$-$closed$
Dense Set L

- L intersects every (basic) open set
- L = Liveness relative to S
- (S, L) is machine-closed
Dense Open Set

- Finite extension suffices to reach the set
 - "Observably" dense
- is a "large" set
Dense Open Set

- Finite extension suffices to reach the set
 = "Observably" dense
- is a "large" set
Dense Open Set

- Finite extension suffices to reach the set
 "Observably" dense
- is a "large" set
Dense Open Set

- Finite extension suffices to reach the set
 = "Observably" dense
- is a "large" set
Dense $G_δ$ Set E

$$E = \bigcap_{i \in \mathbb{N}} G_i \quad G_i \text{ is dense open}$$

- E is dense \iff all G_i are dense (in Baire spaces)
- Still a large set
- Game we play here: *Banach-Mazur game*
Dense $G_δ$ Set E

$$E = \bigcap_{i \in \mathbb{N}} G_i \quad G_i \text{ is dense open}$$

- E is dense \iff all G_i are dense (in Baire spaces)
- Still a large set
- Game we play here: *Banach-Mazur game*
Dense $G_δ$ Set E

$E = \bigcap_{i \in \mathbb{N}} G_i$ \hspace{1cm} G_i is dense open

- E is dense \iff all G_i are dense (in Baire spaces)
- Still a large set
- Game we play here: Banach-Mazur game
Dense G_δ Set E

$$E = \bigcap_{i \in \mathbb{N}} G_i \quad G_i \text{ is dense open}$$

- E is dense \iff all G_i are dense (in Baire spaces)
- Still a large set
- Game we play here:
 Banach-Mazur game
Dense $G_δ$ Set E

$$E = \bigcap_{i \in \mathbb{N}} G_i \quad G_i \text{ is dense open}$$

- E is dense \iff all G_i are dense (in Baire spaces)
- Still a large set
- Game we play here: Banach-Mazur game
Topological Characterisation of Fairness

E is a **co-meager** set iff it *contains* a dense G_δ set

- true in Baire spaces
- co-meager = topologically large
- co-meager = complement of a *meager* (small) set

Theorem

E is a *fairness property for* S *iff* *E* *is a co-meager set relative to* S.
Properties of Fairness

- Refines relative liveness (machine-closure)
- Closed under countable intersection (and superset)
- Maximal class having these two properties (in a strong sense)

- For more: V., Varacca, Kindler: *Defining Fairness*
 CONCUR 2005
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Borel Measure μ over Scott Topology on S

- *measurable* sets are generated by *basic open sets* α^\uparrow for $\alpha \in \Sigma^+ \cap S$
- $\mu(\alpha s^\uparrow) = \mu(\alpha^\uparrow) \cdot \mu(\alpha s^\uparrow|\alpha^\uparrow)$
- μ is determined by giving all $p_s^\alpha := \mu(\alpha s^\uparrow|\alpha^\uparrow)$ for all $\alpha s \in \Sigma^+ \cap S$
Borel Measure μ over Scott Topology on S

- **measurable** sets are generated by **basic open sets** α^\uparrow for $\alpha \in \Sigma^+ \cap S$
- $\mu(\alpha s^\uparrow) = \mu(\alpha^\uparrow) \cdot \mu(\alpha s^\uparrow | \alpha^\uparrow)$
- μ is determined by giving all $p^s_\alpha := \mu(\alpha s^\uparrow | \alpha^\uparrow)$ for all $\alpha s \in \Sigma^+ \cap S$

- **positive**: $\forall \alpha, s : p^s_\alpha > 0$
- **bounded**: $\exists \varepsilon \forall \alpha, s : p^s_\alpha > \varepsilon$
- **Markov**: $\forall \alpha, \beta, s, s' : p^{s'}_{\alpha s} = p^{s'}_{\beta s}$
Generic Relaxations of Correctness

Fairly Correct

- SPEC is topologically large
 i.e. SPEC is a co-meager set in the natural topology on S

\Leftrightarrow there is a fairness assumption F for S such that $S \cap F \subseteq SPEC$

Almost Correct

- SPEC is probabilistically large
 i.e. $\mu(SPEC) = 1$

- needs probability measure μ on S

One natural topology—many associated Borel measures.
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Shared Properties of Topological and Probabilistic Largeness

- Here: E is large $\implies E$ is dense
- Large sets form a σ-filter, i.e.:
 - E is large, $E \subseteq F \implies F$ is large
 - $E_i, i \in \mathbb{N}$ are large $\implies \bigcap_{i \in \mathbb{N}} E_i$ is large
Shared Properties of Topological and Probabilistic Largeness

- Here: E is large \implies E is dense
- Large sets form a σ-filter, i.e.:
 - E is large, $E \subseteq F$ \implies F is large
 - $E_i, i \in \mathbb{N}$ are large \implies $\bigcap_{i \in \mathbb{N}} E_i$ is large
- E is large \implies \overline{E} is not large
 - not true for dense
 - call \overline{E} small when E is large
Shared Properties of Topological and Probabilistic Largeness

- Here: \(E \) is large \(\implies \) \(E \) is dense
- Large sets form a \(\sigma \)-filter, i.e.:
 - \(E \) is large, \(E \subseteq F \implies F \) is large
 - \(E_i, i \in \mathbb{N} \) are large \(\implies \bigcap_{i \in \mathbb{N}} E_i \) is large
- \(E \) is large \(\implies \overline{E} \) is not large
 - not true for dense
 - call \(\overline{E} \) small when \(E \) is large
- \(E \) countable \(\implies \) \(E \) is small; there exist uncountable \(E \) that are small
- \(E \) is large \(F \) not small \(\implies \) \(E \cap F \) not small
Road Map

Fairness and Topological Largeness
- Fairness: Examples
- Fairness: Language-theoretic Characterisation
- Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
- Similarities
- Separation
- Coincidence

Model Checking for Fairly Correct Systems
- Linear Time
- Branching Time
- Complete Fairness
Notions do **not** coincide! (1/2)

- $E = \square \Diamond 0$
- $\mu(E) = 0$ but E is co-meager
- $\mu(\overline{E}) = 1$ but \overline{E} is meager
- System is infinite!
Notions do not coincide! (2/2)

- $E = \Box \Diamond (#A = #B)$
- $\mu(E) = 0$ but E is co-meager
- Property is not ω-regular, hence not expressible in LTL!

\[p \neq \frac{1}{2} \]
Road Map

Fairness and Topological Largeness
- Fairness: Examples
- Fairness: Language-theoretic Characterisation
- Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
- Similarities
- Separation
- Coincidence

Model Checking for Fairly Correct Systems
- Linear Time
- Branching Time
- Complete Fairness
Coincidence — Main Theorem

Theorem

If S is finite-state, E is ω-regular, μ a bounded Borel measure on S then

$$E \text{ is co-meager in } S \iff \mu(E) = 1$$
Coincidence — Main Theorem

Theorem
If S is finite-state, E is ω-regular, μ a bounded Borel measure on S then

$$E \text{ is co-meager in } S \iff \mu(E) = 1$$

In particular true when μ is a positive Markov measure.
Some Consequences

- Any \(\omega \)-regular fairness property has probability 1 under randomised scheduling.
- Obtain alternative characterisations for probability 1 (language-theoretic, game-theoretic, topological) in the considered case.
Some Consequences

- Any ω-regular fairness property has probability 1 under randomised scheduling
- Obtain alternative characterisations for probability 1 (language-theoretic, game-theoretic, topological) in the considered case
- Obtain complexity for model checking fairly correct systems ...
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
LTL Model Checking

Theorem

Checking whether a finite system is fairly correct wrt an LTL specification is PSPACE-complete.

- Use algorithm for finite Markov chains by Courcoubetis and Yannakakis 95
- Algorithm uses time linear in the system size
- PSPACE-hardness for checking for probability 1 is due to Vardi
Alternative: Reactivity

\[\phi = \bigwedge_{i=1}^{n} (\square \diamond h_i \vee \diamond \square g_i) \]

where \(h_i \) and \(g_i \) are past formulas.

- We have linear translation of largeness of \(\phi \) into satisfaction of a CTL+past formula
- Checking CTL+past is PSPACE-complete
- LTL can be translated into reactivity (possible exponential blowup)
- Linear checking when \(h_i \) and \(g_i \) are state formulas (above translation yields CTL formula)
Model Checking ω-regular Properties

Theorem

Checking whether a finite system is fairly correct wrt an ω-regular property given by a Büchi automaton is PSPACE-complete.

- Use algorithm for finite Markov chains by Vardi 85
- Algorithm uses time linear in the system size
- Completeness due to Vardi 85
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Interpret path quantifier \(A \) as "for almost all paths" in either sense

- Large-CTL* has complete axiomatisations
 - Lehmann and Shelah 82: in probabilistic sense
 - Ben-Eliyahu and Magidor 96: in topological sense
 - Axiomatisations for topological interpretation and for finite probabilistic models are the same!

- Model Checking is PSPACE-complete
Large-CTL

Theorem

The model checking problem for Large-CTL can be solved in linear time.

- Largeness can be translated into CTL satisfaction
- Size may blow up
- Blow-up does not affect checking complexity
Road Map

Fairness and Topological Largeness
 Fairness: Examples
 Fairness: Language-theoretic Characterisation
 Fairness: Topological Characterisation

Topological vs Probabilistic Largeness
 Similarities
 Separation
 Coincidence

Model Checking for Fairly Correct Systems
 Linear Time
 Branching Time
 Complete Fairness
Is there a strongest fairness property F for S, i.e.,

$$S \text{ is fairly (almost) correct wrt } SPEC \text{ iff } F \cap S \subseteq SPEC?$$

Advantage: Reduces checking fair correctness to checking satisfaction conditioned on F.
Answer

- No, not in general.
 (Fairness is not closed under arbitrary intersection.)
Answer

- No, not in general. (Fairness is not closed under arbitrary intersection.)
- Yes, if we are interested in a countable class of properties only (e.g. LTL, ω-regular)
Answer

- No, not in general.
 (Fairness is not closed under arbitrary intersection.)
- Yes, if we are interested in a countable class of properties only (e.g. LTL, ω-regular)
- Word fairness is complete for LTL and ω-regular
Answer

- No, not in general. (Fairness is not closed under arbitrary intersection.)
- Yes, if we are interested in a countable class of properties only (e.g. LTL, ω-regular)
- Word fairness is complete for LTL and ω-regular
- Word fairness is not ω-regular
- No ω-regular-property is complete in general
- There is no generic LTL formula that can be used to check fair correctness of S for all $SPEC$
Conclusion

- Generic relaxation of correctness
- Language-theoretic, topological, game-theoretic, and probabilistic interpretation
- Checking for fair correctness is better than weakening specification
- No need to specify any fairness assumption
Conclusion

- Generic relaxation of correctness
- Language-theoretic, topological, game-theoretic, and probabilistic interpretation
- Checking for fair correctness is better than weakening specification
- No need to specify any fairness assumption

- Also in paper: topological interpretation of general path games and the Pistore-Vardi logic