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ABSTRACT

To meet the challenge of processing rapidly growing graph and
network data created by modern applications, a number of dis-
tributed graph processing systems have emerged, such as Pregel and
GraphLab. All these systems divide input graphs into partitions,
and employ a “think like a vertex” programming model to support
iterative graph computation. This vertex-centric model is easy to
program and has been proved useful for many graph algorithms.
However, this model hides the partitioning information from the
users, thus prevents many algorithm-specific optimizations. This
often results in longer execution time due to excessive network
messages (e.g. in Pregel) or heavy scheduling overhead to ensure
data consistency (e.g. in GraphLab). To address this limitation, we
propose a new “think like a graph” programming paradigm. Under
this graph-centric model, the partition structure is opened up to the
users, and can be utilized so that communication within a partition
can bypass the heavy message passing or scheduling machinery. We
implemented this model in a new system, called Giraph++, based on
Apache Giraph, an open source implementation of Pregel. We ex-
plore the applicability of the graph-centric model to three categories
of graph algorithms, and demonstrate its flexibility and superior
performance, especially on well-partitioned data. For example, on
a web graph with 118 million vertices and 855 million edges, the
graph-centric version of connected component detection algorithm
runs 63X faster and uses 204X fewer network messages than its
vertex-centric counterpart.

1. INTRODUCTION

Rapidly growing social networks and other graph datasets require
a scalable processing infrastructure. MapReduce [7], despite its pop-
ularity for big data computation, is awkward at supporting iterative
graph algorithms. As a result, a number of distributed/parallel graph
processing systems have been proposed, including Pregel [15], its
open source implementation Apache Giraph [1], GraphLab [14],
Kineograph [6], Trinity [20], and Grace [23].

The common processing patterns shared among existing dis-
tributed/parallel graph processing systems are: (1) they divide input
graphs into partitions for parallelization, and (2) they employ a
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vertex-centric programming model, where users express their al-
gorithms by “thinking like a vertex”. Each vertex contains infor-
mation about itself and all its outgoing edges, and the computation
is expressed at the level of a single vertex. In Pregel, a common
vertex-centric computation involves receiving messages from other
vertices, updating the state of itself and its edges, and sending mes-
sages to other vertices. In GraphLab, the computation for a vertex is
to read or/and update its own data or data of its neighbors.

This vertex-centric model is very easy to program and has been
proved to be useful for many graph algorithms. However, it does not
always perform efficiently, because it ignores the vital information
about graph partitions. Each graph partition essentially represents a
proper subgraph of the original input graph, instead of a collection
of unrelated vertices. In the vertex-centric model, a vertex is very
short sighted: it only has information about its immediate neighbors,
therefore information is propagated through graphs slowly, one hop
at a time. As a result, it takes many computation steps to propagate
a piece of information from a source to a destination, even if both
appear in the same graph partition.

To overcome this limitation of the vertex-centric model, we pro-
pose a new graph-centric programming paradigm that opens up
the partition structure to users and allows information to flow freely
inside a partition. We implemented this graph-centric model in a
new distributed graph processing system called Giraph++, which is
based on Apache Giraph.

To illustrate the flexibility and the associated performance advan-
tages of the graph-centric model, we demonstrate its use in three
categories of graph algorithms: graph traversal, random walk, and
graph aggregation. Together, they represent a large subset of graph
algorithms. These example algorithms show that the graph-centric
paradigm facilitates the use of existing well-known sequential graph
algorithms as starting points in developing their distributed counter-
parts, flexibly supports the expression of local asynchronous compu-
tation, and naturally translates existing low-level implementations
of parallel or distributed algorithms that are partition-aware.

We empirically evaluate the effectiveness of the graph-centric
model on our graph algorithm examples. We compare the graph-
centric model with the vertex-centric model, as well as with a hybrid
model, which keeps the vertex-centric programming API but allows
asynchronous computation through system optimization. This hy-
brid model resembles the approaches GraphLab and Grace take.
For fair comparison, we implemented all three models in the same
Giraph++ system. In experimental evaluation, we consistently ob-
serve substantial performance gains from the graph-centric model
especially on well-partitioned data. For example, on a graph with
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Figure 1: Example graph and graph partitions

118 million vertices and 855 million edges, the graph-centric con-
nected component algorithm ran 63X faster than the vertex-centric
implementation and used 204X fewer network messages. This was
also 27X faster than the hybrid model, even though it used only 2.3X
fewer network messages. These performance gains are due to an
algorithm-specific data structure that keeps track of the connected
components within a partition and efficiently merges components
that turn out to be connected by a path through other partitions. As a
result, the graph-centric version needs much fewer messages per iter-
ation and completes in fewer iterations than both the vertex-centric
and the hybrid versions.

Note that the proposed graph-centric programming model is not
intended to replace the existing vertex-centric model. Both models
can be implemented in the same system as we demonstrated in
Giraph++. The vertex-centric model has its simplicity. However,
the graph-centric model allows lower level access, often needed to
implement important algorithm-specific optimizations. At the same
time, the graph-centric model still provides sufficiently high level of
abstraction and is much easier to use than, for example, MPI[18].

The graph-centric programming model can also be implemented
in other graph processing systems. We chose Giraph, due to its
popularity in the open source community, and more importantly its
ability to handle graph mutation. Graph mutation is a crucial require-
ment for many graph algorithms, especially for graph aggregation
algorithms, such as graph coarsening [12, 11], graph sparsifica-
tion [19], and graph summarization [22]. Incidentally, to the best
of our knowledge, Giraph++ is the first system able to support both
asynchronous computation and mutation of graph structures.

The performance of many graph algorithms, especially the ones
implemented in the graph-centric model, can significantly benefit
from a good graph partitioning strategy that reduces the number
of cross-partition edges. Although there has been a lot of work on
single-node sequential/parallel graph partitioning algorithms [12,
11, 21], the rapid growth of graph data demands scalable distributed
graph partitioning solutions. In this paper, we adapted and extended
the algorithm of [11] into a distributed graph partitioning algorithm,
which we implemented in the same Giraph++ system, using the
graph-centric model.

The remainder of the paper is organized as follows: Section 2
provides a necessary background on Giraph. In Section 3, we
introduce the graph-centric programming model, and in Section 4,
we exploit the graph-centric model in various graph algorithms. In
Section 5, we discuss the hybrid model which is an alternative design
to support asynchronous graph computation. Then, the detailed
empirical study is provided in Section 6. Section 7 describes the
related work. Finally, we conclude in Section 8.

2. GIRAPH/PREGEL OVERVIEW

Vertex<I, V, E, M> //I: vertex ID type, V: vertex
//value type, E: edge value type, M: message type

void compute(); //user defined compute function

long getSuperstep(); //get the current superstep number
void sendMsg (I id, M msgq);

void sendMsgToAllEdges (M msg) ;

void voteToHalt ();

boolean isHalted();

int getNumOutEdges (); //get the number of outgoing edges
E getEdgeValue (I targetVertexId);

boolean addEdge (I targetVertexId, E edgeValue);

E removeEdge (I targetVertexId);

Iterator<I> iterator(); //iterator to all neighbors
Iterable<M> getMessages(); //get all messages to it

I getVertexId();

V getVertexValue () ;

void setVertexValue (V vertexValue);

void write (DataOutput out); //serialization

void readFields (Datalnput in); //deserialization

Figure 2: Major (not all) functions for Vertex in Giraph.

In this section, we provide an overview of Apache Giraph, which
is an open source implementation of Pregel.

Giraph distributes a graph processing job to a set of workers. One
of the workers acts as the master to coordinate the remaining slave
workers. The set of vertices of a graph is divided into partitions. As
shown in Figure 1, each partition contains a set of vertices and all
their outgoing edges. Each vertex is uniquely identified by an ID,
and a partitioner decides which partition a vertex belongs to based
on its ID. The partitioner is also used to route messages for a vertex
correctly to its partition. The default partitioner is a hash function
on the vertex ID. Range partitioner or other customized partitioners
can be used as well. The number of partitions is usually greater than
the number of workers, to improve load balance.

Giraph employs a vertex-centric model. Each graph vertex is
considered an independent computing unit that inherits from the
predefined Vertex class. Each vertex has a unique ID, a vertex value,
a set of outgoing edges (a set of edges in the case of an undirected
graph) with an edge value associated with each edge, and a set of
messages sent to it. Figure 2 shows the major functions for the
Vertex class with I as the vertex ID type, V as the vertex value type,
E as the edge value type, and M as the message type.

Giraph follows the Bulk Synchronous Parallel (BSP) computa-
tion model. A typical Giraph program consists of an input step,
where the graph is initialized (e.g., distributing vertices to worker
machines), followed by a sequence of iterations, called supersteps,
which are separated by global synchronization barriers, and finally
an output step to write down the results. A vertex carries two states:
active and inactive. In the beginning, all vertices are active. A
vertex can voluntarily deactivate itself by calling voteToHalt() or
be passively activated by some incoming messages from other ver-
tices. The overall program terminates if every vertex is inactive. In
superstep ¢, each active vertex can receive messages sent by other
vertices in superstep ¢ — 1, query and update the information of
the current vertex and its edges, initiate graph topology mutation,
communicate with global aggregation variables, and send messages
to other vertices for the next superstep ¢ + 1. All this computation
logic is executed in a user-defined compute() function of the Vertex
class. After all active vertices finish their local compute() calls in a
superstep, a global synchronization phase allows global data to be
aggregated, and messages created by each vertex to be delivered to
their destinations.

To reduce the number of messages transmitted and buffered across
supersteps, a user can define a combiner function if only an aggre-
gate (such as min, max, sum) of messages is required instead of the
individual messages.



Algorithm 1: Connected Component Algorithm in Giraph

1 COMPUTE()

2 if getSuperstep()==0 then

3 L setVertex Value(get VertexID());

4 minValue=min(getMessages(), getVertex Value());

5 if getSuperstep()==0 or minValue < getVertexValue() then
6 setVertex Value(min Value);

7 sendMsgToAllEdges(minValue);

8 voteToHalt();

// combiner function
9 COMBINE(msgs)
10 L return min(msgs);
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Figure 3: Example execution of connected component algo-
rithms in vertex-centric and graph-centric models

Fault tolerance in Giraph is achieved by periodic checkpointing.
Users can specify the frequency of checkpointing (in terms of num-
ber of supersteps). During checkpointing (it only happens at the
beginning of a superstep), the workers save the state of all vertices
including vertex value, edge values, and all incoming messages.
Once a failure is detected, the master notifies all workers to enter the
recovery mode. Then, in the subsequent superstep, workers reload
the full state from the last checkpoint, and proceed with the normal
computation.

Example: Connected Component Algorithm in Giraph. Al-
gorithm 1 shows an example of the connected component algorithm
for undirected graphs implemented in Giraph. In this algorithm,
the vertex value associated with each vertex is its component label.
Initially in superstep 0, each vertex uses its own ID as its component
label (each vertex is itself a connected component), then propagates
the component label to all its neighbors. In subsequent supersteps,
each vertex first finds the smallest label from the received messages.
If this label is smaller than the vertex’s current component label,
the vertex modifies its label and propagates the new label to all its
neighbors. When the algorithm finishes, the component label for
each vertex is the smallest vertex ID in the corresponding connected
component. To reduce the number of network messages, a combiner
(line 9-10) that computes the min of messages is used for this al-
gorithm. For the example graph in Figure 3(a), Figure 3(b) depicts
the vertex labels and the message passing in every superstep for this
connected component algorithm.

3. Giraph++ GRAPH-CENTRIC MODEL

In this section, we introduce the new graph-centric programming
model. In a nutshell, instead of exposing the view of a single vertex
to the programmers, this model opens up the entire subgraph of each
partition to be programmed against.

3.1 Internal Vertices and Boundary Vertices

Just like the vertex-centric model, the graph-centric model also
divides the set of vertices in the original graph into partitions as
depicted in Figure 1(b). Let G =< V, E > denote the original
graph with its vertices and edges, and let Py U P, U...UP, =V be
the k partitions of V, i.e. P;NP; = 0, Vi # j. For each partition P;,
the vertices in P;, along with vertices they link to, define a subgraph
G; of the original graph. Figure 1(c) shows examples of subgraphs.
To be more precise, let V; denote all the vertices that appear in the
subgraph G;. We define V; = P; U {v|(u,v) € EAu € P;}. We
say that any vertex u € P; is an internal vertex of G; and any vertex
v € (V;\P,) is a boundary vertex. In Figure 1(c), A and B are
the internal vertices of G1, while D and F are its boundary vertices
(shown as shaded vertices). Note that a vertex is an internal vertex
in exactly one subgraph, which we call the owner of the vertex, but
it can be a boundary vertex in zero or more subgraphs. For example,
in Figure 1(c), A is an internal vertex in G1, and is a boundary vertex
in both G2 and G3. G1 is the owner of A.

In the rest of this paper, when discussing graph-centric model, we
will refer to subgraphs as partitions when it is not ambiguous to do
S0.

In the Giraph++ graph-centric model, for each internal vertex in a
partition, we have all the information of its vertex value, edge values
and incoming messages. But for a boundary vertex in a partition,
we only associate a vertex value with it. This vertex value is just a
temporary local copy. The primary copy of the vertex value resides
in its owner’s corresponding internal vertex. The local copies of
vertex values are essentially caches of local computation in different
partitions, they have to be propagated to the primary copy through
messages.

The distinction between internal vertices and boundary vertices
are crucial, as in Giraph++ messages are only sent from boundary
vertices to their primary copies. This is because the whole sub-
graph structure is available in the graph-centric model, information
exchange between internal vertices is cheap and immediate. The
algorithm can arbitrarily change the state of any internal vertex at
any point in time, without a need for a network message or a wait for
the next superstep. Boundary vertex values can also be arbitrarily
changed, but these changes will have to be propagated to the owners
through messages, at the end of the superstep.

3.2 Giraph++ Programming API

As we intend to make the graph-centric model a valuable comple-
ment to the existing vertex-centric model, our design principal for
Giraph++ is to fully make use of the existing Giraph infrastructure.
A program in Giraph++ is still executed in sequence of supersteps,
separated by global synchronization barriers. However, in each
superstep, the computation is performed on the whole subgraph in a
partition.

We utilize the Vertex class in Giraph for internal vertices and
boundary vertices in Giraph++. However, we turn off functions that
are not needed. Among the major functions shown in Figure 2, the
retained functions for internal vertices are highlighted in blue and
red, whereas only the ones highlighted in red are retained for the
boundary vertices. Like in Giraph, each internal vertex of a partition
has two states: active or inactive. However, a boundary vertex does
not have any state.



GraphPartition<I, V, E, M>//I: vertex ID type, V: vertex
//value type, E: edge value type, M: message type

void compute(); //user defined compute function

void allVoteToHalt (); //all vertices vote to halt

long getSuperstep(); //get the current superstep number
void sendMsg (I id, M msg);

boolean containsVertex (I id);

boolean isInternalVertex (I id);

boolean isBoundaryVertex (I id);

Vertex<I, V, E, M> getVertex(I id);

Collection<Vertex<I, V, E, M>> internalVertices();
Collection<Vertex<I, V, E, M>> activelnternalVertices();
Collection<Vertex<I, V, E, M>> boundaryVertices();
Collection<Vertex<I, V, E, M>> allVertices();

void write (DataOutput out); //serialization

void readFields (Datalnput in); //deserialization

Figure 4: Major functions for GraphPartition.

Algorithm 2: Connected Component Algorithm in Giraph++

1 COMPUTE()

2 if getSuperstep()==0 then

3 sequentialCC(); // run a sequential CC algorithm
4 foreach bv IN boundaryVertices() do

5 L sendMsg(bv.getVertexId(), bv.getVertex Value());

6 else

7 equiCC=0);// store equivalent CCs

8 foreach iv IN activelnternalVertices() do

9 minValue=min(iv.getMessages());

10 if minValue <iv.getVertexValue() then

1 L equiCC.add(iv.getVertex Value(), minValue);

12 equiCC.consolidate();// get min for equivalent CCs
13 foreach iv IN internalVertices() do

14 changedTo=equiCC.uniqueLabel(iv.getVertex Value());

15 iv.setVertex Value(changedTo);

16 foreach by IN boundaryVertices() do

17 changedTo=equiCC.uniqueLabel(bv.getVertex Value());

18 if changedTo!=Dbv.getVertexValue() then

19 bv.setVertex Value(changedTo);

20 sendMsg(bv.getVertexId(), bv.getVertex Value());

21 | allVoteToHalt();

To support the graph-centric programming model, we introduce a
new class called GraphPartition. Figure 4 lists the major functions in
this class. This class allows users to 1) access all vertices in a graph
partition, either internal or boundary, 2) check whether a particular
vertex is internal, boundary or neither, 3) send messages to internal
vertices of other partitions, and 4) collectively deactivate all internal
vertices in this partition. The user defined compute() function in
the GraphPartition class is on the whole subgraph instead of on
individual vertex.

Fault Tolerance in Giraph++. Like Giraph, Giraph++ achieves
fault tolerance by periodic checkpointing. During each checkpoint,
Giraph++ saves all the vertices (with their states), edges (with their
states) , and messages in each partition. Furthermore, since users can
freely define auxiliary data structures inside the GraphPartition class.
The checkpointing scheme also calls the GraphPartition.write()
function to serialize the auxiliary data structures. During failure
recovery, besides reading back the vertices, edges, and messages,
Giraph++ also deserializes the auxiliary data structures by calling
the GraphPartition.readFields() function.

Example: Connected Component Algorithm in Giraph++.
Algorithm 2 demonstrates how the connected component algorithm
is implemented in Giraph++. For the example graph in Figure 3(a),
Figure 3(c) and 3(d) depict the subgraphs of its two partitions and
the execution of the graph-centric algorithm, respectively.

Sequential connected component algorithms have been well stud-
ied in the graph literature. Since the graph-centric programming

model exposes the whole subgraph in a partition, an existing sequen-
tial algorithm can be utilized to detect the connected components
in each graph partition. If a set of vertices belong to the same
connected component in a partition, then they also belong to the
same connected component in the original graph. After informa-
tion is exchanged across different partitions, some small connected
components will start to merge into a larger connected component.

Exploiting the above property, superstep O first runs a sequential
connected component algorithm (we use a breath-first-search based
algorithm) on the subgraph of each graph partition and then sends
the locally computed component label for each boundary vertex
to its corresponding owner’s internal vertex. For the example in
Figure 3(a), superstep O finds one connected component in the sub-
graph G1 and assigns the smallest label A to all its vertices including
the boundary vertex D. Similarly, one connected component with
label C is detected in G2. Messages with the component labels are
then sent to the owners of the boundary vertices. In each of the
subsequent supersteps, the algorithm processes all the incoming
messages and uses them to find out which component labels actually
represent equivalent components (i.e. they will be merged into a
larger component) and stores them in a data structure called equiCC.
In the above example, vertex D in superstep 1 receives the message
A from G1, while its previous component label is C. Thus, pair (A,
C) is put into equiCC to indicate that the connected components
labeled A and C need to be merged. In equiCC.consolidate() func-
tion, we use the smallest label as the unique label for the set of
all equivalent components. In our example, the new label for the
merged components should be A. Then the unique labels are used
to update the component labels of all the vertices in the partition.
If a boundary vertex’s component label is changed, then a message
is sent to its owner’s corresponding internal vertex. Comparing the
two algorithms illustrated in Figure 3(b) and 3(d), the graph-centric
algorithm needs substantially fewer messages and supersteps. In
superstep 0, all the vertices in P1 already converge to their final
labels. It only takes another 2 supersteps for the whole graph to
converge. Note that the same combiner function used in Algorithm 1
can also be used in Algorithm 2.

We argue that the graph-centric programming model in Giraph++
is more general and flexible than the vertex-centric model. The
graph-centric model can mimic the vertex-centric model by simply
iterating through all the active internal vertices and perform vertex-
oriented computation. In other words, any algorithm that can be
implemented in the vertex-centric model can also be implemented
in the graph-centric model. However, the performance of some
algorithms can substantially benefit from the graph-centric model.
The connected component algorithm in Algorithm 2 is such an
example. More examples of the graph-centric model’s superior
flexibility will be shown in Section 4.

4. EXPLOITING Giraph++

In this section, we explore the application of our proposed Gi-
raph++ graph-centric programming model to three categories of
graph algorithms: graph traversal, random walk and graph aggre-
gation. For each category, we pick one representative algorithm to
illustrate how it is implemented in the graph-centric paradigm.

4.1 Graph Traversal

Graph traversal represents a category of graph algorithms that
need to visit all the vertices of a graph in a certain manner, while
checking and updating the values of vertices along the way. These
algorithms often involve a search over the graph. Examples include



Algorithm 3: PageRank Algorithm in Giraph

Algorithm 4: PageRank Algorithm in Giraph++

1 COMPUTE()

2 if getSuperstep()< MAX_ITERATION then
3 delta=0;

4 if getSuperstep()==0 then

5 setVertex Value(0);

6 delta+=0.15;

7 delta+=sum(getMessages());

8 if delta>0 then

9 setVertex Value(getVertex Value()+delta);
sendMsgToAllEdges(0.85*delta/getNumOutEdges());

uno| voteToHalt();

// combiner function
12 COMBINE(msgs)
13 L return sum(msgs);

computing shortest distances, connected components, transitive clo-
sures, etc. Many such algorithms are well-studied, with sequential
implementations readily available in textbooks and online resources.

We just examined the implementation of one such algorithm in the
vertex-centric and the graph-centric models, in Algorithms 1 and 2,
respectively. In the graph-centric model, we applied an existing
sequential algorithm to the local subgraph of each partition in super-
step 0, then only propagate messages through the boundary vertices.
In the subsequent supersteps, messages to each vertex could result in
the value update of multiple vertices, thus requiring fewer supersteps
than a corresponding vertex-centric implementation.

4.2 Random Walk

The algorithms of the second category are all based on the ran-
dom walk model. This category includes algorithms like HITS [13],
PageRank [5], and its variations, such as ObjectRank [2]. In this
section, we use PageRank as the representative random walk algo-
rithm.

Algorithm 3 shows the pseudo code of the PageRank algorithm
(using damping factor 0.85) implemented in the vertex-centric model.
This is not the classic PageRank implementation, which iteratively
updates the PageRank based on the values from the previous itera-
tionas in PRy, = d X 3¢, u0)em) P‘};i:ll + (1 —d), where | Ey|
is the number of outgoing edges of u. Instead, Algorithm 3 follows
the accumulative iterative update approach proposed in [25], and
incrementally accumulates the intermediate updates to an existing
PageRank. It has been proved in [25] that this accumulative update
approach converges to the same values as the classic PageRank
algorithm. One advantage of this incremental implementation of
PageRank is the ability to update increment values asynchronously,
which we will leverage in the graph-centric model below.

Algorithm 4 shows the PageRank algorithm implemented in the
graph-centric model. This algorithm also follows the accumulative
update approach. However, there are two crucial differences: (1)
Besides the PageRank score, the value of each vertex contains an
extra attribute, delta, which caches the intermediate updates re-
ceived from other vertices in the same partition (line 16-18). (2)
Local PageRank computation is asynchronous, as it utilizes the
partial results of other vertices from the same superstep (line 14).
Asynchrony has been demonstrated to accelerate the convergence of
iterative computation in many cases [8], including PageRank [14].
Our graph-centric programming paradigm allows the local asyn-
chrony to be naturally expressed in the algorithm. Note that both
the vertex-centric and the graph-centric algorithms can benefit from
a combiner that computes the sum of all messages (line 12-13 of
Algorithm 3).

1 COMPUTE()

2 if getSuperstep()>MAX_ITERATION then

3 ‘ allVoteToHalt();

4 else

5 if getSuperstep()==0 then

6 foreach v IN allVertices() do

7 v.getVertex Value().pr=0;

8 v.getVertex Value().delta=0;

9 foreach iv IN activelnternalVertices() do
10 if getSuperstep()==0 then
1 L iv.getVertex Value().delta+=0.15;
12 iv.getVertex Value().delta+=sum(iv.getMessages());

13 if iv.getVertexValue().delta>>0 then

14 iv.getVertex Value().pr+=iv.getVertex Value().delta;
15 update=0.85*iv.getVertex Value().delta/iv.getNumOutEdges();
16 while iv.iterator().hashNext() do

17 neighbor=getVertex(iv.iterator().next());

18 neighbor.getVertex Value().delta+=update;

19 iv.getVertex Value().delta=0;

20 foreach by IN boundaryVertices() do

21 if bv.getVertexValue().delta>0 then

22 sendMsg(bv.getVertexId(), bv.getVertex Value().delta);
23 bv.getVertex Value().delta=0;

Figure 5: Graph coarsening example

4.3 Graph Aggregation

The third category of graph algorithms, which we call graph
aggregation, are used to condense a large graph into a structurally
similar but smaller graph by collapsing vertices and/or edges. Promi-
nent examples of graph aggregation are graph summarization [22],
graph sparsification [19], and graph coarsening [12, 11]. These algo-
rithms are more sophisticated than graph traversal or random walk
algorithms. They typically involve mutation of the graph structure
by adding and removing vertices or/and edges. As a result, plat-
forms that do not support graph mutation, such as Grace [23] and
GraphLab [14], cannot efficiently support these algorithms. We pick
graph coarsening as a representative graph aggregation algorithm to
implement in the graph-centric paradigm.

4.3.1 Background on Graph Coarsening

Graph coarsening is often used as a first step in a graph par-
titioning algorithm, to reduce the complexity of the graph. We
implemented a modification of the graph coarsening algorithm used
in the ParMetis parallel graph partitioning tool [11]. Their coars-
ening algorithm works on an undirected graph and executes in a
number of coarsening rounds to generate smaller and smaller graphs.
In each round, the algorithm first finds a maximal matching of the
current graph. As shown in Figure 5(a), a matching M C F is
a subset of edges, such that no two edges in M share a common
incident vertex. We call a matching M maximal, if it is not a proper
subset of another matching of the graph. After finding a maximal
matching, the algorithm collapses the incident vertices of each edge
in the matching into a super vertex. During this coarsening process,
the algorithm keeps a weight for each vertex and each edge. Initially,



the weights are all 1. The weight of a super vertex is the sum of the
weights of all vertices collapsed into it. An edge between two super
vertices is an aggregation of edges between the original vertices, so
its weight is the sum of the individual edge weights. Figure 5(b)
demonstrates an example coarsened graph of Figure 5(a).

In ParMetis [11], finding a maximal matching is done in a number
of phases. In phase ¢, a processor randomly iterates through its local
unmatched vertices. For each such vertex wu, it uses a heavy-edge
heuristic to match u with another unmatched vertex v if there is any.
If v is local, the match is established immediately. Otherwise, a
match request is sent to the processor that owns v, conditioned upon
the order of w and v: if % is even, a match request is sent only when
u < v; otherwise, a request is sent only when u > v. This ordering
constraint is used to avoid conflicts when both incident vertices of
an edge try to match to each other in the same communication step.
In phase 7 + 1, multiple match requests for a vertex v is resolved by
breaking conflicts arbitrarily. If a match request from w is granted, a
notification is sent back to u. This matching process finishes when
a large fraction of vertices are matched.

4.3.2 Graph Coarsening in Giraph++

The graph coarsening algorithm in ParMetis can be naturally
implemented in the graph-centric programming model. The (super)
vertex during the coarsening process is represented by the Vertex
class in Giraph++. When two (super) vertices are collapsed together,
we always reuse one of the (super) vertices. In other words, we
merge one of the vertex into the other. After a merge, however, we
do not delete the vertex that has been merged. We delete all its
edges and declare it inactive, but utilize its vertex value to remember
which vertex it has been merged to.

Algorithm Overview. The graph coarsening implementation in
our graph-centric model follows the similar process as in the par-
allel ParMetis algorithm: The algorithm executes iteratively in a
sequence of coarsening rounds. Each coarsening round consists of
m matching phases followed by a collapsing phase. Each of the
matching phases is completed by 2 supersteps and the collapsing
phase corresponds to a single superstep. We empirically observed
that m = 4 is a good number to ensure that a large fraction of the
vertices are matched in each coarsening round. Instead of follow-
ing exactly the same procedure as ParMetis, we add an important
extension to the coarsening algorithm to specially handle 1-degree
vertices. It has been observed that most real graphs follow power
law distribution, which means a large number of vertices have very
low degree. 1-degree vertices can be specially handled to improve
the coarsening rate, by simply merging them into their only neighbor.
Once again, this merge is done in two supersteps to resolve conflicts
that arise if two vertices only connect to each other and nothing else.

Vertex Data Structure. The value associated with each vertex
consists of the following four attributes: (1) state keeps track of
which state the vertex is currently in. It can take one of the 4 val-
ues: NORMAL, MATCHREQUESTED, MERGED and MERGEHOST.
NORMAL obviously indicates that the vertex is normal — ready to
do any action; MATCHREQUESTED means that the vertex just sent
out an match request; MERGED denotes that the vertex is or will be
merged into another vertex; and MERGEHOST means that another
vertex will be merged into this vertex. (2) mergedTo records the id of
the vertex that this vertex is merged into, so that we can reconstruct
the member vertices of a super vertex. This attribute is legitimate
only when state=MERGED. (3) weight keeps track of the weight of
the (super) vertex during the coarsening process. (4) replacements
stores all the pair of vertex replacements in order to guarantee the
correctness of graph structure change during a merge. For example,
consider a graph where A is connected to B, which in turn links

— match request

—_— _—>

(@)

Figure 6: Examples in the matching phase of graph coarsening

to C. If B is matched and merged to A, B needs to notify C that
C’s connection to B will be replaced by a connection to A after the
merge. In this case, B — A is stored in C’s replacements before the
actual merge happens. Besides vertex values, the value associated
with an edge is the weight of the (super) edge.

After dealing with 1-degree vertices in the first 2 supersteps,
the algorithm executes in iterations of m matching phases and a
collapsing phase.

Matching Phase. Each matching phase consists of 2 super-
steps: a match request step and a match notification step. In a
match request step, the algorithm randomly scans over the vertices
with state=NORMAL. For each such vertex wu, it looks through
the edges that are not in the replacements list (as vertices in re-
placements have already been matched), and chooses the one with
the highest weight, say (u,v), by breaking ties arbitrarily. If v
is local and v.state=NORMAL, we establish the match by setting
u.state=MERGED, u.mergedT o = v and v.state=MERGEHOST,
and notifies each w’s neighbor to add u — v in its replacements
through either a local operation or a message depending on whether
the neighbor is local or not. Otherwise, if v is remote, a match
request message will be sent to v based on the ordering constraints.
If a match request is sent, we set v.state=MATCHREQUESTED.

In a match notification step, when a vertex v receives match
requests, we first check the state of v. If v.state is MERGED or
MERGEHOST, we ignore all the match requests, since v is already
matched. If v.state is MATCHREQUESTED, we also ignore the
match requests. This is to avoid the conflict when v’s match request
to w is granted but at the same time v has already granted the
match request from u. Under the definition of graph matching,
no two matches should share a common vertex. This scenario is
demonstrated in Figure 6(a). The ordering constraint doesn’t help
in this chain case, as the vertices could happen to be ordered u <
v < w and the phase number ¢ could happen to be even. Therefore,
we use state=MATCHREQUESTED to break chains. In summary,
match requests to v are only considered when v.state=NORMAL.
Then we choose the request with the heaviest edge weight, say
from u, and send uw a match notification. At the same time, we
change v.state=MERGED and v.mergedTo = u, then notifies v’s
neighbors to add v — w in their replacements.

When a match notification is received by a vertex w at the begin-
ning of the next match request step, we simply change u.state=
MERGEHOST. On the other hand, if no match notification is re-
ceived and u.state= MATCHREQUESTED, we change u’s state back
to NORMAL.

We have discussed above that a chain of match requests needs to
be broken in order to avoid conflicts. As shown in Figure 6(b), for
a hub vertex, potentially many other vertices could send match re-
quests to it. However, as long as the hub vertex has issued a match re-
quest, all the requests that it receives will be ignored. In order to give
a fair chance to all the match requests, we add a probability to de-
cide whether a vertex u with state=NORMAL should send a match
request or not. This probability is defined as p, = m,
where |E,| is the number of edges incident on u. Based on this
probability, a hub vertex is less likely to send a match request, and
thus more likely to be the receiving end of match requests.



Collapsing Phase. After all the matches are established, in the
collapsing phase, each vertex first processes all the replacements
on the edges. After that, if an active vertex u has state=MERGED,
it needs to be merged to the target vertex with id=u.mergedTo.
If the target vertex is local, the merge is processed immediately.
Otherwise, a merge request is sent to the target vertex with u’s
weight and all its edges with their weights. Next, we remove all ©’s
edges but keep u.state and u.mergedT’o so that later we can trace
back who is merged into whom. After all the merges are done, if
a vertex has state=MERGEHOST, we set it back to NORMAL to
participate in the next round of coarsening.

5. A HYBRID MODEL

In the previous section, we have shown how the graph-centric
model can benefit a number of graph algorithms. One of the ma-
jor reasons for the improved performance under the graph-centric
model is the allowance of the local asynchrony in the computation
(e.g. the PageRank algorithm in Algorithm 4): a message sent to
a vertex in the same partition can be processed by the receiver in
the same superstep. In addition to using the flexible graph-centric
programming model, asynchrony can also be achieved by a system
optimization while keeping the same vertex-centric programming
model. We call this approach as the hybrid model.

To implement the hybrid model, we differentiate the messages
sent from one partition to the vertices of the same partition, called
internal messages, from the ones sent to the vertices of a different
partition, called the external messages. We keep two separate in-
coming message buffers for each internal vertex, one for internal
messages called inbox;,, and one for the external messages called
inbox... The external messages are handled using exactly the same
message passing mechanism as in the vertex-centric model. An
external message sent in superstep ¢ can only be seen by the receiver
in superstep ¢ + 1. In contrast, an internal message is directly placed
into inbox;,, and can be utilized immediately in the vertex’s com-
putation during the same superstep, since both the sender and the
receiver are in the same partition. Suppose vertices A and B are in
the same partition, and during a superstep ¢, A sends B an internal
message M. This message is immediately put into B’s inbox;, in
the same superstep (with proper locking mechanism to ensure con-
sistency). If later B is processed in the same superstep, all messages
in B’s inbox;, and inbox., including M, will be utilized to perform
B’s compute() function. On the other hand, if B is already processed
before M is sent in superstep ¢, then M will be kept in the message
buffer until B is processed in the next superstep ¢ + 1. To reduce
the overhead of maintaining the message buffer, we apply the com-
bine() function on the internal messages, whenever a user-defined
combiner is provided.

Under this hybrid model, we can keep exactly the same connected
component algorithm in Algorithm 1 and the PageRank algorithm
in Algorithm 3 designed for the vertex-centric model, while still
benefiting from the asynchronous computation. However, one needs
to be cautious when using the hybrid model. First of all, not all
graph problems can benefit from asynchrony. Furthermore, blindly
running a vertex-centric algorithm in the hybrid mode is not always
safe. For example, the vertex-centric graph coarsening algorithm
won’t work under the hybrid model without change. This is because
the graph coarsening algorithm requires different types of messages
to be processed at different stages of the computation. The hybrid
model will mix messages from different stages and confuse the
computation. Even for PageRank, although our specially designed
accumulative iterative update algorithm works without change in
the hybrid model, the classic PageRank algorithm won’t fly in the
hybrid model without change. We point out that similar care also

needs to be taken when designing algorithms in other systems that
support asynchronous computation.

Note that GraphLab and Grace also allow asynchronous com-
putation while keeping the vertex-centric model. Both systems
achieve this goal mainly through the customization of different ver-
tex scheduling polices in the systems. However, one price paid for
supporting asynchrony in their systems is that the scheduler can not
handle mutation of graphs. In fact, both GraphLab and Grace re-
quire the graph structure to be immutable. This, in turn, limits their
applicability to any algorithm that mutates the structure of graphs,
such as all the graph aggregation algorithms discussed in Section 4.3.
In comparison, Giraph++ does not have such conflicts of interests:
programmers can freely express the asynchronous computation in
the graph-centric model, while the system maintains the ability to
handle graph mutation.

6. EXPERIMENTAL EVALUATION

In this section, we empirically compare the performance of the
vertex-centric, the hybrid, and the graph-centric models. For fair
comparison among the different models, we implemented all of them
in the same Giraph++ system. We refer to these implementations as
Giraph++ Vertex Mode (VM), Hybrid Mode (HM), and Graph Mode
(GM), respectively. We expect that relative performance trends that
we observed in this evaluation will hold for other graph processing
systems, though such study is beyond the scope of this paper.

6.1 Experimental Setup

We used four real web graph datasets, shown in Table 1, for
all of our experiments. The first three datasets, uk-2002, uk-2005
and webbase-2001 were downloaded from law.di.unimi.it/
datasets.php. These datasets were provided by the WebGraph
[4] and the LLP [3] projects. The last dataset clueweb50m was
downloaded from boston.1lti.cs.cmu.edu/clueweb09/
wiki/tiki-index.php?page=Web+Graph. Itis the TREC
2009 Category B dataset. All four datasets are directed graphs.
Since some algorithms we studied are for undirected graphs, we
also converted the four directed graphs into undirected graphs. The
numbers of edges in the undirected version of the graphs are shown
in the 4th column of Table 1. These four dataset are good rep-
resentative for real life graphs with heavy-tail degree distribution.
For example, although the uk-2005 graph has an average degree of
23.7, the largest in-degree of a vertex is 1,776,852 and the largest
out-degree of a vertex is 5,213.

All experiments were conducted on a cluster of 10 IBM Sys-
tem x iDataPlex dx340 servers. Each consisted of two quad-core
Intel Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, and in-
terconnected using 1Gbit Ethernet. Each server ran Ubuntu Linux
(kernel version 2.6.32-24) and Java 1.6. Giraph++ was implemented
based on a version of Apache Giraph downloaded in June 2012,
which supports two protocols for message passing: Hadoop RPC
and Netty (https://netty.io). We chose Netty (by setting
-Dgiraph.useNetty=true), since it proved to be more stable. Each
server was configured to run up to 6 workers concurrently. Since,
a Giraph++ job requires one worker to be the master, there were at
most 59 slave workers running concurrently in the cluster.

Note that in any of the modes, the same algorithm running on the
same input will have some common overhead cost, such as setting up
a job, reading the input, shutting down the job, and writing the final
output. This overhead stays largely constant in VM, HM, and GM,
regardless of the data partitioning strategy. For our largest dataset
(webbase-2001), the common overhead is around 113 seconds, 108
seconds, and 272 seconds, for connected component, PageRank
and graph coarsening, respectively. As many graph algorithms (e.g.



directed undirected
directed undirected partitioning || hash partitioned | graph partitioned | hash partitioned | graph partitioned
dataset #nodes #edges #edges #partns time (sec.) ncut imblc | ncut imblc ncut imblc | ncut imblc
uk-2002 18,520,486 298,113,762 261,787,258 177 1,082 0.97 1.01 0.02 2.15 0.99 1.06 | 0.02 2.24
uk-2005 39,459,925 936,364,282 783,027,125 295 6,891 0.98 1.01 | 0.06 7.39 0.997 1.61 | 0.06 7.11
webbase-2001 | 118,142,155 | 1,019,903,190 | 854,809,761 826 4,238 0.97 1.03 | 0.03 3.78 0.999 1.41 | 0.03 5.05
clueweb50m | 428,136,613 454,075,604 | 446,769,872 2891 4,614 0.9997 1.07 | 0.07 5.56 0.9997 1.96 | 0.06 6.95

Table 1: Datasets characteristics

PageRank and graph coarsening) requires 100s of supersteps, this
cost is amortized quickly. For example, if we run 100 supersteps for
PageRank and graph coarsening, then even for the fastest execution
times on this dataset (GM with graph partitioning strategy), the
common overhead accounts for around 7.7% and 8.7% of the total
execution times, respectively. For the connected component algo-
rithm, this cost is more noticeable, however the high-level trends are
the same. Even with overheads included in the execution time, GM
is 3X faster than VM on hash partitioned data (instead of 3.1X, if
discounting the common overhead) for the connected component al-
gorithm. Same speedup on graph partitioned data is 22X (instead of
63X, if discounting the common overhead). In order to focus on the
difference in the processing part of VM, HM, and GM, we excluded
the common overhead from the reported execution time for all the
experiments. In addition, except for the experiments in Section 6.6,
we turned off the checkpointing to eliminate its overhead.
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Figure 7: The execution time and network messages per super-
step for connected component detection on uk-2002 dataset.

6.1.1 Scalable Graph Partitioning

Graph partitioning plays a crucial role in distributed graph pro-
cessing. For each experiment, we need to first decide on the number
of partitions. Intuitively, a larger partition size would benefit GM
and HM, as it increases the chance that neighboring vertices belong
to the same partition. However, smaller partitions increase potential
degree of parallelism and help balance workload across the cluster.
We observed empirically that when each partition contained 100,000
to 150,000 vertices, all three modes performed well. Therefore, we
heuristically set the number of partitions for each graph dataset so
that it is a multiple of 59 (the number of slave workers) and each
partition contained around 100,000 to 150,000 vertices. The number
of partitions for each dataset used in our experiment is shown in
column 5 of Table 1.

An even more important question is how to partition a graph. A
good partitioning strategy should minimize the number of edges
that connect different partitions, to potentially reduce the number
of messages during a distributed computation. Most distributed
graph processing systems, such as Giraph [1] and GraphLab [14],
by default use random hash to partition graphs. Obviously, this
random partitioning results in a large number of edges crossing
partition boundaries. To quantify this property, we use the well-
known Average Normalized Cut measure. Normalized Cut of a
partition P, denoted ncut(P), is defined as the faction of edges
linking vertices in P to vertices in other partitions among all the
outgoing edges of vertices in P, i.e. H(T{’?fj‘;;lfg;%f}‘. The
average ncut of all the partitions can be used to measure the quality
of a graph partitioning. As shown in column 7 and column 11 of
Table 1, the average ncuts for hash partitioning across different
datasets are all very close 1, which means that almost all the edges
cross partition boundaries.

GraphLab [14] and the work in [10], also proposed to employ
the Metis [12] (sequential) or the ParMetis [11] (parallel) graph
partitioning tools to generate better partitions. However, Metis and
ParMetis cannot help when the input graph becomes too big to fit in
the memory of a single machine.

We implemented a scalable partitioning approach based on the
distributed graph coarsening algorithm described in Section 4.3.2.
This algorithm mimics the parallel multi-level k-way graph parti-
tioning algorithm in [11], but is simpler and more scalable. There
are 3 phases in this algorithm: a coarsening phase, a partitioning
phase, and a uncoarsening phase. In the coarsening phase, we ap-
ply the distributed graph coarsening algorithm in Section 4.3.2 to
reduce the input graph into a manageable size that can fit in a single
machine. Then, in the partitioning phase, a single node sequential
or parallel graph partitioning algorithm is applied to the coarsened
graph. We simply use the ParMetis algorithm in this step. At last,
in the uncoarsening phase, we project the partitions back to the
original graph. This phase does not apply any refinements on the
partitions as in [11]. However, uncoarsening has to be executed in a
distributed fashion as well. Recall that in the coarsening phase each
vertex that is merged into another has an attribute called mergedTo
to keep track of the host of the merger. This attribute can help us
derive the membership information for each partition. Suppose that
a vertex A is merged into B which in turn is merged into C, and
finally C belongs to a partition P. We can use the mergedTo attribute
to form an edge in a membership forest. In this example, we have
an edge between A and B, and an edge between B and C. Finding
which vertices ultimately belong to the partition P is essentially
finding the connected components in the membership forest. Thus,
we use Algorithm 2 in the last stage of graph partitioning.

Column 6 of Table 1 shows the total graph partitioning time, with
graph coarsening running 100 supersteps in the graph-centric model.
The average ncuts of graph partitions produced by this algorithm
are listed in columns 9 and 13. On average, only 2% to 7% edges
g0 across partitions.

There is another important property of graph partitioning that af-
fects the performance of a distributed graph algorithm: load balance.




execution time (sec) network messages (millions) number of supersteps
hash partitioned (HP) graph partitioned (GP) hash partitioned (HP) graph partitioned (GP) | hash partitioned (HP) | graph partitioned (GP)
dataset VM HM GM VM HM GM VM HM GM VM HM [ GM [ VM [ HM GM VM [ HM GM
uk-2002 441 438 272 532 89 19 3,315 3,129 1,937 | 3414 17 8.7 33 32 19 33 19 5
uk-2005 1,366 | 1,354 723 1,700 230 90 11,361 | 10,185 | 5,188 | 10,725 | 370 | 225 22 22 16 22 12 5
webbase-2001 | 4,491 | 4,405 | 1,427 | 3,599 | 1,565 57 13,348 | 11,198 | 6,581 | 11,819 | 136 58 605 | 604 39 605 | 319 5
clueweb50m 1,875 | 2,103 | 1,163 | 1,072 250 103 6,391 5,308 | 2,703 | 6,331 129 69 38 37 14 38 18 5

Table 2: Total execution time, network messages, and number of supersteps for connected component detection

For many algorithms, running time for each partition is significantly
affected by its number of edges. Therefore, we also need to measure
how the edges are distributed across partitions. We define the load
imbalance of a graph partitioning as the maximum number of edges
in a partition divided by the average number of edges per partition,
%, where Ep = {(u,v) € Elu € P} and p is
the number of partitions. Table 1 also shows the load imbalance
factors for both hash partitioning and our proposed graph partition-
ing across different datasets. Clearly, hash partitioning results in
better balanced partitions than our graph partitioning method. This
is because most real graph datasets present a preferential attachment
phenomenon: new edges tend to be established between already
well-connected vertices [17]. As a result, a partition that contains
a well-connected vertex will naturally bring in much more edges
than expected. Producing balanced graph partitions with minimal
communication cost is an NP-hard problem and is a difficult trade-
off in practice, especially for very skewed graphs. Newly proposed
partitioning technique with dynamic load balancing [24], and the
vertex-cut approach introduced in the latest version of Graphlab [9]
can potentially help alleviate the problem, but cannot completely
solve the problem.

We decided to “eat our own dog food” and evaluate the connected
component and PageRank algorithms, using our graph partitioning
(GP) strategy in addition to the default hash partitioning (HP). Note
that the focus of this evaluation is on comparing Giraph++ VM,
HM, and GM modes. Although we implemented a scalable graph
partitioning algorithm and use its output to evaluate two distributed
graph algorithms, we leave the in-depth study of graph partitioning
algorithms for the future work. The GP experiments should be
viewed as a proxy for a scenario where some scalable graph parti-
tioning algorithm is used as a part of graph processing pipeline. This
should be the case if graphs are analyzed by (multiple) expensive
algorithms, so that the performance benefits of the low ncut justify
the partitioning cost.

i.e.

6.2 Connected Component

The first algorithm we use for the performance evaluation is the
connected component analysis. In VM and HM we implemented
Algorithm 1, and in GM we implemented Algorithm 2.

Figure 7 shows the execution time and network messages per
superstep as the connected component algorithm progresses on
the uk-2002 dataset (the undirected graph version) under the three
modes and with both hash partitioning (HP) and graph partitioning
(GP) strategies. From this figure, we observe that: (1) The shapes
of curves of the execution time look very similar to those of the
network messages. Since the computation is usually very simple
for graph traversal algorithms, execution time is mostly dominated
by message passing overhead. (2) Better partitioning of the input
graph doesn’t help much in the VM case, because the vertex-centric
model doesn’t take advantage of the local graph structure. VM sends
virtually the same number of network messages with GP and HP.
The small differences are due to the use of the combiner. The total
number of messages without combiner is always exactly the same in
VM, no matter which partitioning strategy is used. (3) Under either

HP or GP, GM performs significantly better as it generates much
fewer network messages per superstep. Furthermore, GM reduces
the number of supersteps needed for the algorithm. (4) GM benefits
significantly from better partitioning of graphs, which allows it to
do majority of the work in the first 3 supersteps.

HM only speeds up processing of messages local to a partition.
Thus, it provides only marginal benefit under HP where 99% percent
of edges go across partitions. However, under GP, where only 2% of
edges cross partition boundaries, it provides 201X improvement in
the number of messages, which translates into 6X improvement in
overall running time. Still, GM does even better, as it uses algorithm-
specific, per-partition data structures to store equivalent connected
components. This allows GM to instantly change states of entire
groups of vertices, instead of processing them one at a time. Thus,
GM sends 2X fewer messages and runs 4.7X faster than HM.

The above observations also apply to the other 3 datasets as shown
in Table 2. Across all the four datasets, GM dramatically reduces
the number of iterations, the execution time and network messages.
Under HP, the reduction in network messages ranges from 1.7X to
2.4X resulting in 1.6X to 3.1X faster execution time. The advantage
of the graph-centric model is more prominent under GP: 48X to
393X reduction of network messages and 10X to 63X speedup in
execution time.

Note that a smaller number of network messages doesn’t always
translate to faster execution time. For example, for the uk-2005
dataset VM sends fewer messages under GP than under HP, yet it
still runs 24% slower, due to load imbalance. The largest partition
becomes the straggler in every superstep, thus increasing the total
wall clock time.

6.3 PageRank

Next, we compare the performance of PageRank algorithm in
different modes. In VM and HM we implemented Algorithm 3, and
in GM we implemented Algorithm 4.

Figure 8 compares the convergence rates of PageRank on the
uk-2002 dataset under different modes and partitioning strategies.
The error is measured in L; error against the true PageRank values,
obtained by running Algorithm 4 for 200 iterations. Under HP
strategy, VM, HM and GM all exhibit very similar convergence
behavior with supersteps and time (the corresponding three lines
overlap in Figure 8(a) and are very close to each other in Figure 8(b)).
This is because vertices in each partition mostly connect to vertices
outside, thus there is very few asynchronous updates that actually
happen in each superstep. As VM cannot take much advantage of
better partitioning strategies, its convergence behavior under GP
is still similar to that of HP. GM and HM, on the other hand, take
significantly fewer supersteps and less time to converge under GP.
Figure 8(b) shows dramatic reduction (more than 5X) of GM in time
needed to converge, as compared to VM. HM converges much faster
than VM, however its total time to converge is still up to 1.5X slower
than GM, due to HM’s generic, and hence less efficient, in-memory
structures.

As the algorithms progress, the execution time and network mes-
sages per superstep on the uk-2002 dataset are depicted in Figure 9.
The progression of PageRank looks very different than that of con-




Superstep

(a) Convergence with # supersteps

0 200 400

Execution Time (sec)

(b) Convergence with time
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Figure 9: The execution time and network messages per super-
step for PageRank on uk-2002 dataset (the first 30 supersteps).

nected component detection. No matter under which mode and
which partitioning strategy, the execution time and network mes-
sages do not change much across different supersteps.

The performance comparisons are consistent across all four datasets,
as shown in Table 3. When input graphs are better partitioned, GM
brings in 41X to 116X reduction in network messages and 1.6X to
12.8X speedup in execution time per iteration, keeping in mind that
it also results in much faster convergence rate. Again, due to the
higher load imbalance resulted from the GP strategy, VM drags its
feet for the uk-2005 dataset.

6.4 Graph Coarsening

We now empirically study the graph coarsening algorithm in
VM and GM. Recall, that HM cannot be used for the algorithm
implementation described in Section 4.3.2, as the algorithm does
not allow asynchronous execution.

The implementation of the graph coarsening algorithm in VM
follows a similar procedure as in GM, except that no local match

per-superstep execution time (sec)
hash partition (HP) | graph partition (GP)

dataset VM | HM | GM | VM | HM | GM
uk-2002 22 23 23 21 6 4
uk-2005 88 91 89 167 28 13

webbase-2001 121 125 125 102 24 13
clueweb50m 62 64 65 34 21 21

dataset per-superstep network messages (millions)
uk-2002 175 | 168 | 168 | 186 1.6 1.6
uk-2005 701 | 684 | 684 | 739 | 6.7 6.7

webbase-2001 | 717 | 689 | 689 | 751 9.2 9.2
clueweb50m 181 181 181 168 | 4.1 4.1

Table 3: Execution time and network messages for PageRank

or merge operations could be performed and everything is done
through message passing. Table 4 compares the two models in terms
of execution time and network messages for running 100 supersteps
of the graph coarsening algorithm. Note that we do not assume better
partitioning of input graphs is available, since graph coarsening is
usually the first step for a graph partitioning algorithm. As a result,
all the input graphs are hash partitioned. Across all four datasets,
the graph coarsening algorithm benefits at different levels from our
graph-centric model, because some match and merge operations can
be resolved locally without message passing. For the clueweb50m
dataset, the execution time is more than halved. Figure 10 charts the
progressive execution time and network messages per superstep for
the clueweb50m dataset. Both time and messages fluctuate as the
algorithm progresses. But since the coarsened graph continues to
shrink, both measures decrease as a general trend. The coarsening
rates on the clueweb50m dataset with both supersteps and time
are shown in Figure 11. In terms of supersteps, the coarsening
rates look neck and neck for VM and GM. Since clueweb50m is a
sparser graph, the first 2 supersteps of handling 1-degree vertices
are particularly effective in reducing the number of active vertices.
Due to the better efficiency of GM, its coarsening rate with time
excels (more than doubled).

execution time (sec) | network messages (millions)
dataset VM GM VM GM
uk-2002 626 600 1,215 1,094
uk-2005 6,687 5414 3,206 2,796
webbase-2001 | 3,983 2,839 4,015 3,904
clueweb50m 7,875 3,545 2,039 2,020

Table 4: Execution time and network messages for graph coars-
ening running 100 supersteps

6.5 Effect of Partitioning Quality

We now investigate the effect of partitioning quality on the per-
formance of different models. We chose the uk-2002 dataset for
this experiment. Besides HP and GP partitioning strategies, we con-
structed a different partitioning (abbreviated as SP) of the uk-2002
graph by randomly swapping 20% vertices in different partitions of
the GP strategy. The resulting partitions have average ncut 0.57 and
0.56 for the undirected version and the directed version of the graph,
respectively. The corresponding imbalance factors are 1.83 and 1.75.
Both the average ncuts and the imbalance factors of SP fall between
those of HP and GP. Table 5 lists the execution times of connected
component and PageRank with the three partitioning strategies. The
results are consistent with previous experiments. Better partitioning
of input doesn’t help much for VM. In fact, VM under GP performs
worse than under SP due to higher imbalance. In contrast, both HM
and GM benefit a lot from better-quality partitioning strategies, with
GM benefiting the most.

6.6 Effect on Fault Tolerance
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Figure 10: Execution time and network messages per superstep
for graph coarsening on clueweb50m dataset.
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Figure 11: Coarsening rates on clueweb50m dataset.

In Section 3, we have discussed that Giraph++ utilizes the same
checkpointing and failure recovery mechanism as in Giraph to en-
sure fault tolerance. The only difference is that in GM mode Gi-
raph++ also stores and reads back the auxiliary data structures for
each graph partition (e.g. equiCC for the connected component
algorithm), respectively. Sometimes, GM mode also introduces
more attributes for each vertex, such as the delta value in the PageR-
ank algorithm. It may seem that a lot of overhead is introduced in
GM. However, this little bit of extra cost is sometimes outweighed
by the dramatic reduction of messages and number of iterations.
During our empirical study, we consistently observed similar or
even reduced overhead for checkpointing and failure recovery un-
der GM. Let’s take the relatively large webbase-2001 dataset as an
example. If we turn on checkpointing for every 10th superstep for
the PageRank computation, with hash-partitioned input, 59 workers
spend collectively 7,413 seconds for checkpointing under VM and
7,728 seconds under GM (the elapsed time is roughly 7728/59=131
seconds) for running 30 supersteps. In comparison, with better

connected component
total time (sec)

pagerank
per-superstep time (sec)

HP SP GP
VM | 441 | 356 532 22 18 21
HM | 438 | 199 89 23 13 6
GM | 272 | 106 19 23 12 4

Table 5: Effect of partitioning quality on uk-2002 dataset

Giraph++ (sec) GraphLab (sec)
VM HM GM Sync | Async
HP | 4,491 | 4405 | 1427 912 error
GP | 3,599 | 1,565 57 150 161

Table 6: Connected component in Giraph++ and GraphLab

graph partitions, VM takes 7,662 seconds, whereas GM spends
6,390 seconds collectively for the same other setting. For the graph
coarsening algorithm, VM takes totally 28,287 seconds for check-
pointing with 59 workers running 100 supersteps (checkpointing
for every 10th superstep), whereas GM takes about 27,309 seconds.
Furthermore, as GM often results in fewer iterations, the number of
checkpoints needed for an algorithm is also reduced. For connected
component detection, which only takes 10s of supersteps under GM,
it is not necessary to even turn on the checkpointing option. Similar
behavior was observed for reading the checkpointed state during
recovery.

6.7 Comparison with Prior Work

Finally, we compare Giraph++ with GraphLab for the connected
component algorithm on the largest webbase-2001 dataset. Once
again, we want to emphasize that the focus of this paper is on
the flexible graph-centric programming model and that it can be
implemented in different graph processing systems. Head-to-head
comparison between different systems is not the purpose of this
paper, as the different implementation details (e.g. Giraph++ uses
Netty or Hadoop RPC for communication, whereas GraphLab uses
MPI) and the use of different programming languages (Giraph++ in
Java and GraphLab in C++) contribute a great deal to the difference
in performance. Nevertheless, the performance numbers in Table 6
shed some light on the potential of the graph-centric programming
model in other graph processing systems.

In this experiment, we ran GraphLab (version 2.1) using the same
number of workers on the same 10-node cluster as described in
Section 6.1. We also use the same hash partitioning (HP) and graph
partitioning (GP) strategies described in Table 1 for Giraph++ and
GraphLab. The reported execution time for both systems excludes
the common overhead of setting up jobs, reading inputs, writing
outputs and shutting down jobs. As Table 6 shows, the synchronous
mode (denoted as Sync) in GraphLab has much more efficient run-
time compared to the equivalent VM mode in the Giraph++ BSP
model, partly due to the system implementation differences outlined
above. GraphLab also benefits from the better graph partitioning
strategy. However, the asynchronous mode (denoted as Async in
Table 6) in GraphLab did not deliver the better performance as ex-
pected. Under HP, Async ran into memory allocation error, and
under GP it performed worse than Sync. Even though Async often
needs fewer operations to converge, it also reduces the degree of
parallelism due to the locking mechanism needed to ensure data con-
sistency. For the connected component algorithm on this particular
dataset, this trade-off results in the inferior performance of Async.
Nevertheless, the most important takeaway from this experiment is
that GM in Giraph++ even outperforms the best of GraphLab by
2.6X, despite the system implementation differences. This result
further highlights the advantage of the graph-centric programming
model and also shows its potential in other graph processing sys-
tems.



7. RELATED WORK

An overview of Pregel[15] and Giraph[1] is provided in Section 2.

GraphLab [14] also employs a vertex-centric model. However,
different from the BSP model in Pregel, GraphLab allows asyn-
chronous iterative computation. As another point of distinction,
Pregel supports mutation of the graph structure during the compu-
tation, whereas GraphLab requires the graph structure to be static.
This limits GraphLab’s application to problems like graph coarsen-
ing [11], graph sparsification [19] and graph summarization [22].

Kineograph [6] is a distributed system for storing continuously
changing graphs. However, graph mining algorithms are still per-
formed on static snapshots of changing graphs. Kineograph’s com-
putation model is also vertex centric.

Trinity Graph Engine [20] handles both online and offline graph
processing. For online processing, it keeps the graph topology in
a distributed in-memory key/value store. For offline processing, it
employs the similar vertex-based BSP model as in Pregel.

Grace [23] is a single-machine parallel graph processing platform.
It employs the similar vertex-centric programming model as in
Pregel, but allows customization of vertex scheduling and message
selection to support asynchronous computation. However, Grace,
too, requires immutable graph structure.

Naiad [16] is designed for processing continuously changing
input data. It employs a differential computation model and exposes
a declarative query language based on .NET Language Integration
Query (LINQ).

8. CONCLUSION

In summary, we proposed a new graph-centric programming
model for distributed graph processing and implemented it in a
system called Giraph++. Compared to the vertex-centric model used
in most existing systems, the graph-centric model allows users to
take full advantage of the local graph structure in a partition, which
enables more complex and flexible graph algorithms to be expressed
in Giraph++. By exploiting the use of the graph-centric model in
three categories of graph algorithms — graph traversal, random walk
and graph aggregation — we demonstrated that the graph-centric
model can make use of the off-the-shell sequential graph algorithms
in distributed computation, allows asynchronous computation to
accelerate convergence rates, and naturally support existing partition-
aware parallel/distributed algorithms. Furthermore, Giraph++ is able
to support both asynchronous computation and mutation of graph
structures in the same system.

Throughout our empirical study, we observed significant perfor-
mance improvement from the graph-centric model, especially when
better graph partitioning strategies are used. The better performance
of the graph-centric model is due to the significant reduction of
network messages and execution time per iteration, as well as fewer
iterations needed for convergence. This makes the graph-centric
model a valuable complement to the existing vertex-centric model.
In the future, we would like to explore more graph algorithms using
this model and conduct more in-depth study of distributed graph
partitioning algorithms.
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