TALE: A Tool for Approximate Large Graph Matching

Yuanyuan Tian and Jignesh M. Patel
University of Michigan
Motivation

- Graphs are everywhere.
 - Social networks, computer networks, biological networks
- Graph databases are large and growing rapidly in size.
- Wealth of information is encoded in graph databases.

Need: Graph Matching
Motivation

- Previous studies largely focus on **exact** graph matching.
 - Assume precise graph data
 - Subgraph isomorphism (NP-Complete)

- Real life graphs are noisy and incomplete.
 - More challenging (need heuristic methods)

Need: Approximate Graph Matching
Motivation

- Most existing methods are applicable to small query graphs.
 - 10s of nodes and edges
- Supporting large queries is more and more desired.
 - Protein Interaction Networks (PINs):
 - 100s ~ 1000s nodes and edges
 - Compare PIN of one species against other species

Need: **Approximate Large Graph Matching**
TALE: A Tool for Approximate Large Graph Matching

- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size

- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases

- Experiments on Real Datasets
 - Effectiveness
 - Efficiency
TALE: A Tool for Approximate Large Graph Matching

- **A Novel Disk-based Indexing Method**
 - High pruning power
 - Linear index size with the database size

- **Index-based Matching Algorithm**
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases

- **Experiments on Real Datasets**
 - Effectiveness
 - Efficiency
Neighborhood Indexing

- Index Unit?

Neighborhood
(induced subgraph of a node and its neighbors)

<table>
<thead>
<tr>
<th>Index Unit</th>
<th>Pruning Power</th>
<th>Index Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgraphs</td>
<td>High 😊</td>
<td>O(n^k) 😞</td>
</tr>
<tr>
<td>Nodes</td>
<td>Low 😞</td>
<td>O(n) 😊</td>
</tr>
<tr>
<td>Neighborhoods</td>
<td>High 😊</td>
<td>O(n) 😊</td>
</tr>
</tbody>
</table>
Index Unit

- Index Unit: Neighborhood
 - Which node is at the center?
 - Node label
 - How many neighbors does the node have?
 - Node degree
 - How do the neighbors connect to each other?
 - NeighborConnection: # edges between neighbors
 - Who are the neighbors?
Index Unit

- Who are the neighbors?
 - Naïve approach: list the labels of the neighbors
 - Problem: the number of neighbors varies.
 - If # labels in the problem domain is a small constant.
 - Deterministic bit array.

 \[
 \begin{array}{ccccc}
 A & B & C & D & E \\
 1 & 0 & 0 & 1 & 1 \\
 \end{array}
 \]
 Neighbor Array
 - What if the number of labels is huge?
 - Bloom filter: label $\xrightarrow{\text{hash}}$ position in a m-bit array.

- Information in the index unit
 - (label, degree, nConn, nArray)
Match a Query Neighborhood

Exact

- ✓ N_q.label = N_{db}.label
- ✓ N_q.degree \leq N_{db}.degree
- ✓ N_q.nConn \leq N_{db}.nConn
- ✓ (NOT N_{db}.nArray)

Approximate

- ✓ $\text{group}(N_q$.label) = $\text{group}(N_{db}$.label)
- ✓ N_q.degree \leq N_{db}.degree + ϵ
- ✓ N_q.nConn \leq N_{db}.nConn + δ
- ✓ $\left|\text{(NOT } N_{db} \text{.nArray}) \text{ AND } N_q \text{.nArray}\right| \leq \epsilon$

ρ : % of neighbors of a query node with no corresponding matches in the neighborhood of a database node

max # missing neighbors: $\epsilon = \rho \cdot (N_q$.degree)

max # missing nConn: $\delta = \epsilon \cdot (\epsilon - 1)/2 + \epsilon \cdot (N_q$.degree - ϵ)
Index Structure

- Support efficient search for DB neighborhoods.

 \[
group(N_{db}.label) = \group(N_q.label) \\
N_{db}.degree \geq N_q.degree - \varepsilon \\
N_{db}.nConn \geq N_q.nConn - \delta \\
|\text{NOT } N_{db}.nArray \text{ AND } N_q.nArray| \leq \varepsilon
\]

- Simple implementation in RDBMSs.
 - Use existing robust disk-based index structures in RDBMSs.

Hybrid Index Structure
Index Probing

- Probe the B+tree for group, degree and nConn
 - Easy

- Probe bitmaps for nArrays
 - Naïve approach: look at each row of a bitmap
 - A better approach
 - Operate on bit slices.
 - Up to 12X speedup!

12
TALE: A Tool for Approximate Large Graph Matching

- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size

- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases

- Experiments on Real Datasets
 - Effectiveness
 - Efficiency
Observations

- **Observation 1**: Not every node plays the same role in a graph.
 - Node importance

- **Observation 2**: A good match should be more tolerant towards missing unimportant nodes than missing important nodes.
Matching Algorithm Overview

- **Step 1**: Match the important nodes from the query.
- **Step 2**: Progressively extends the node matches.
TALE Matching Algorithm

- **Step 1**: Match important nodes from the query.
 - Select important nodes.
 - Importance measure: *degree centrality*
 - The percentage of important nodes: \(P \)
 - Probe Neighborhood Index to match important nodes.
 - For each candidate graph in the database, find the one-to-one mappings to the important query nodes.
 - Maximum weighted bipartite graph matching
 - Query nodes
 - Nodes in a DB graph
 - Weight (matching neighbors & neighbor connections)
TALE Matching Algorithm

- **Step 2**: Progressively extends the node matches.
 - Start from the importance node matches.
 - Match “nearby” nodes of already matched nodes.
 - Not just immediate neighbors
 - Also nodes two hops away
 - gap nodes
 - differences in node connectivity
TALE: A Tool for Approximate Large Graph Matching

- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size

- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases

- Experiments on Real Datasets
 - Effectiveness
 - Efficiency
Experimental Evaluation

- Implementation
 - C++ on top of PostgreSQL

- Evaluation Platform
 - 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2
 - PostgreSQL: version 8.1.3, 512 MB buffer pool

- Experimental Datasets
 - BIND protein interaction networks
 - ASTRAL protein structures

- Evaluation Measures:
 - Effectiveness
 - Efficiency
Effectiveness Experiment

- **Protein Interaction Network Comparison (BIND)**

Table

<table>
<thead>
<tr>
<th></th>
<th>#node</th>
<th>#edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>830</td>
<td>942</td>
</tr>
<tr>
<td>mouse</td>
<td>2991</td>
<td>3347</td>
</tr>
<tr>
<td>human</td>
<td>8470</td>
<td>11260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>#KEGGs hit</th>
<th>KEGG coverage</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat vs. human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graemlin</td>
<td>0</td>
<td>NA</td>
<td>910.0</td>
</tr>
<tr>
<td>TALE</td>
<td>6</td>
<td>3.2%</td>
<td>0.3</td>
</tr>
<tr>
<td>mouse vs. human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graemlin</td>
<td>18</td>
<td>5.0%</td>
<td>16305.5</td>
</tr>
<tr>
<td>TALE</td>
<td>42</td>
<td>13.6%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- **# KEGGs hit**: number of pathways aligned between 2 species
- **KEGG coverage**: fraction of proteins aligned within a pathway.
Efficiency Experiment

- Query increasing sized ASTRAL datasets
 - 20 queries (153.1n, 592.0e)
 - Top 20 results
Related Work

- Index-based Approximate Graph Matching
 - Graphfil, PIS, CDIndex, C-Tree, SAGA
 - Limited approximation: Graphfil, PIS, CDIndex, C-Tree
 - For small queries: Graphfil, PIS, CDIndex, SAGA

- Pairwise Graph Alignment Methods
 - NetworkBlast, MaWIsh, Graemlin
 - Specific to protein interaction networks
 - Very slow for database search (no index)
Conclusion

- TALE → *Approximate Large Graph Matching*
- **Neighborhood Indexing**
 - Disk-based index using existing index structures in RDBMSs
 - High pruning power
 - Linear index size with the database size
- **Index-based Matching Algorithm**
 - Distinguish nodes by importance
 - Match important nodes then extend to others
- **Experiments on Real Datasets**
 - Improved effectiveness and efficiency over existing methods
Questions?
Suggestions?
Thanks! 😊