STOCHASTIC PETRI NETS FOR DISCRETE-EVENT SIMULATION

Peter J. Haas

IBM Almaden Research Center
San Jose, CA

Petri Nets 2007
Part I

Introduction
My Background

- Mid 1980’s: PhD student studying discrete-event simulation
 - Under Donald Iglehart (Stanford) & Gerald Shedler (IBM)
 - “Performance analysis using stochastic Petri nets”
- Wrote PNPM85 simulation paper with Gerry Shedler
 - “Regenerative simulation of stochastic Petri nets”
- Kept working (in between Info. Mgmt. research) . . .
 - Modelling power for simulation [HS88]
 - Prototypes: SPSIM, “Labelled” SPN simulator [JS89, HS90]
 - Delays [HS93a,b]
 - Standardized time series [Haa97,99a,99b]
 - Transience and recurrence [GH06, GH07]
- Gave this seminar at 2004 Winter Simulation Conference
Complex Systems

Concurrency

Synchronization

Precedence

Priority

Randomness
(non-Markovian stochastics)
Simulation and SPNs

- Assessment of system performance is difficult
 - Even modelling the system is hard!
 - Model is usually analytically and numerically intractable
 - Huge state space and/or non-Markovian
 - Simulation is often the only available numerical method
 - But can’t simulate blindly

- SPNs can help
 - An attractive graphically-oriented modelling framework
 - Well suited to sample-path generation on a computer
 - Solid mathematical foundation
Simulation theory for SPNs

- SPNs as a modelling framework for discrete-event systems
- Sample path generation for SPNs
- Steady-state output analysis: theory and methods
Sources for This Tutorial

Outline

- Simulation basics
 - Discrete-event systems
 - The simulation process
- Modelling with SPNs
 - Building blocks
 - Modeling power for simulation
- Sample-path generation
 - The marking process
 - Efficiency issues, parallelism
- Steady-state estimation for SPNs
 - Conditions for long-run stability (recurrence, limit theorems)
 - Output-analysis methods and their validity
Goals

- Illustrate the rich behavior of non-Markovian SPNs
- Introduce you to some basic simulation methodology
- Explore foundational issues in modelling and analysis
- Connect modeling practice and simulation theory
- Stimulate your interest in SPNs as a simulation framework
Part II

Simulation Basics
What We Simulate: Discrete-Event Stochastic Systems

- System changes state when events occur
 - Stochastic changes at random times
- Underlying stochastic process \(\{ X(t): t \geq 0 \} \)
 - \(X(t) \) = state of system at time \(t \) (a random variable)
 - Piecewise-constant sample paths
 - Typically not a continuous-time Markov chain
- Modelling challenge: defining appropriate system state
 - Compact for efficiency reasons
 - Enough info to compute performance measures
 - Enough info to determine evolution
Why We Simulate: Performance Evaluation

- Steady-state performance measures
 - Time-average limits:
 \[\alpha = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} f(X(u)) \, du \]
 - Steady-state means:
 \[\alpha = E[f(X)], \text{ where } X(t) \Rightarrow X \]
 - I.e., \(P_\mu \{ X(t) = s \} \rightarrow P \{ X = s \} \) as \(t \to \infty \)
 - Want point estimate \(\hat{\alpha}(t) \)
 - Unbiased: \(E_\mu [\hat{\alpha}(t)] = \alpha \)
 - Strongly consistent: \(P_\mu \{ \lim_{t \to \infty} \hat{\alpha}(t) = \alpha \} = 1 \)
 - Want asymptotic 100\% confidence interval
 - \(I(t) = [\hat{\alpha}(t) - H(t), \hat{\alpha}(t) + H(t)] \)
 - \(P_\mu \{ I(t) \ni \alpha \} \approx p \) for large \(t \)
 - CI width indicates precision of point estimate
Challenges in Performance Evaluation

- Is steady-state quantity α well-defined?
 - Ex: steady-state number in $M/M/1$ queue with $\rho > 1$

- Is steady-state quantity independent of startup condition μ?
 - Ex: reducible Markov chain

- Statistical challenges
 - Autocorrelation problem
 - Initialization bias problem

- How to handle Delays?
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(D_j)
 \]
The Simulation Process

Real-world system

- Decide
 - Expected idle time
 - Long-run avg. cost
 - Long-run throughput
 - Expected delay

- Model
 - Robot arm
 - Conveyor
 - Exp(u) arrival rate

Estimates

- Analyze

Simulation model

- Specify
 - \{X(t) : t \geq 0\}
 - \{S_n : n \geq 0\}
 - \{D_n : n \geq 0\}

Sample paths

- Program & Execute

Stochastic process(es)
How Modelling Frameworks Can Help

- But challenges, also:
 - Immediate transitions and markings
Part III

Modelling with SPNs
The SPN Graph

$D = \text{finite set of places}$

$E = \text{finite set of transitions (timed and immediate)}$

marking = assignment of token counts to places

$s = (2, 1, 1)$
The marking changes when an enabled transition fires.

Removes 1 token per place from random subset of input places.

Deposits 1 token per place in random subset of output places.
Clocks (Event Scheduling)

- One clock per transition: records remaining time until firing
- Enabled transitions compete to trigger marking change
 - The clock that runs down to 0 first is the “winner”
 - Can have simultaneous transition firing: $p(s'; s, E^*)$
 - Numerical priorities: specify simultaneous-firing behavior
- At a marking change: three kinds of transitions
 - New transitions: Use clock-setting distribution function
 - Old transitions: Clocks continue to run down
 - Newly-disabled transitions: Clock readings are discarded
Clocks, Continued

- Clock-setting distribution depends on:
 - Old marking, new marking, trigger set
- Clocks run down at marking-dependent speeds $r(s, e)$
 - Processor sharing
 - Zero speeds: preempt-resume behavior
Timed and Immediate Markings

- **Immediate marking**: \(\geq 1 \) immediate transition is enabled
- An immediate marking vanishes as soon as it is attained
- Otherwise, marking is timed
Example: Cyclic Queues with Feedback

position: 1 2 3 4 5
Bottom-Up and Top-Down Modeling
Other Modeling Features

Concurrency:

Synchronization:

Precedence:

Priority:
Why This SPN Model?

- **Conciseness:** small set of building blocks
- **Generality:** subsumes GSPNs, etc.
 - Theory carries over
- **Modelling power:** captures many discrete-event systems
Modeling Power of SPNs

- Compare to Generalized semi-Markov processes (GSMPs)
 - Arbitrary state definition \((s)\)
 - Set \(E(s)\) of active events is a building block
 - No restrictions on \(p(s'; s, E^*)\)
 - No “immediate events”

- Strong mimicry
 - Define \(X(t)\) = state of system at time \(t\)
 - Define \((S_n, C_n)\) = (state, clocks) after \(n\)th state transition
 - \(\{ X(t) : t \geq 0 \}\) processes have same dist’n (under mapping)
 - \(\{ (S_n, C_n) : n \geq 0 \}\) have same dist’n (under mapping)

- Theorem: SPNs and GSMPs have same modeling power
 - Establishes SPNs as framework for discrete-event simulation
 - Allows application of GSMP theory to SPNs
 - Methodology allows other comparisons (e.g., inhibitor arcs)
Part IV

Sample-Path Generation
The Marking Process

- **Marking process**: \(\{ X(t) : t \geq 0 \} \)
 - \(X(t) = \) the marking at time \(t \)
 - A very complicated process

- **Defined in terms of Markov chain** \(\{(S_n, C_n) : n \geq 0\} \)
 - System observed after the \(n \)th marking change
 - \(S_n = (S_{n,1}, \ldots, S_{n,L}) = \) the marking
 - \(C_n = (C_{n,1}, \ldots, C_{n,M}) = \) the clock-reading vector
 - Chain defined via SPN building blocks
Definition of the Marking Process

\[X(t) = S_{N(t)} \]
Generation of the GSSMC \(\{(S_n, C_n): n \geq 0\} \)

1. [Initialization] Set \(n = 0 \). Select marking \(S_0 \) and clock readings \(C_{0,i} \) for \(e_i \in E(S_0) \); set \(C_{0,i} = -1 \) for \(e_i \not\in E(S_0) \).

2. Determine holding time \(t^*(S_n, C_n) \) and firing set \(E_n^* \).

3. Generate new marking \(S_{n+1} \) according to \(p(\cdot; S_n, E_n^*) \).

4. Set clock-reading \(C_{n+1,i} \) for each new transition \(e_i \) according to \(F(\cdot; S_{n+1}, e_i, S_n, E_n^*) \).

5. Set clock-reading \(C_{n+1,i} \) for each old transition \(e_i \) as \(C_{n+1,i} = C_{n,i} - t^*(S_n, C_n)r(S_n, e_i) \).

6. Set clock-reading \(C_{n+1,i} \) equal to \(-1\) for each newly disabled transition \(e_i \).

7. Set \(n \leftarrow n + 1 \) and go to Step 2.

Can compute GSMP \(\{X(t): t \geq 0\} \) from GSSMC.
Implementation Considerations for Large-Scale SPNs

- Use event lists (e.g., heaps) to determine E^*
 - $O(1)$ computation of E^*
 - $O(\log m)$ update time, where $m = \#$ of enabled transitions
- Updating the state is often simpler in an SPN
- Efficient techniques for event scheduling [Chiola91]
 - Encode transitions potentially affected by firing of e_i
- Parallel simulation of subnets
 - E.g., Adaptive Time Warp [Ferscha & Richter PNPM97]
 - Guardedly optimistic
 - Slows down local firings based on history of rollbacks
Part V

Stability Theory for SPNs
Stability and Simulation

- Focus on time-average limits:

\[r(f) = \lim_{t \to \infty} \frac{1}{t} \int_0^t f(X(u)) \, du \quad \tilde{r}(\tilde{f}) = \lim_{n \to \infty} \frac{1}{n-1} \sum_{i=0}^{n-1} \tilde{f}(S_n, C_n) \]

- Ex: long-run cost, availability, utilization
- Extensions:
 - Functions (e.g. ratios) of such limits
 - Cumulative rewards (impulse/continuous/mixed), gradients
 - Steady-state means
- Key questions:
 - When do such limits exist?
 - When do various estimation methods apply?
 - Can get weird behavior: \(\lim_n E [\zeta_n - \zeta_{n-1}] = \infty \) but explodes!
- Approach: analyze the chain \(\{(S_n, C_n) : n \geq 0\} \)
Harris Recurrence: A Basic Form of Stability

- Definition for general chain \(\{ Z_n : n \geq 0 \} \) with state space \(\Gamma \)

\[
P_Z \{ Z_n \in A \text{ i.o.} \} = 1, \quad z \in \Gamma \quad \text{whenever} \quad \phi(A) > 0
\]

- \(\phi \) is a recurrence measure (often “Lebesgue-like”)
- Every “dense enough” set is hit infinitely often w.p. 1
- No “wandering off to \(\infty \)”

- Positive Harris recurrence:
 - Chain admits invariant probability measure \(\pi \)
 - \(P_\pi \{ Z_1 \in A \} = \pi(A) \)
 - Implies stationarity when initial dist’n is \(\pi \)

- When is \(\{ (S_n, C_n) : n \geq 0 \} \) (positive) Harris recurrent?
 - Fundamental question for steady-state estimation
Some Stability Conditions

- Density component g of a cdf F: $F(t) \geq \int_0^t g(u) \, du$
- $s \rightarrow s'$ iff $p(s'; s, e) > 0$ for some e
- $s \sim s'$: either $s \rightarrow s'$ or $s \rightarrow s^{(1)} \rightarrow \ldots \rightarrow s^{(n)} \rightarrow s'$
- Assumption PD(q):
 - Marking set G is finite
 - SPN is irreducible: $s \sim s'$ for all $s, s' \in G$
 - All speeds are positive
 - There exists $\bar{x} \in (0, \infty)$ s.t. all clock-setting dist'n functions
 - Have finite qth moment
 - Have density component positive on $[0, \bar{x}]$
- Assumption PDE: replace finite qth moment requirement by
 \[
 \int_0^\infty \int_0^{a_F} e^{ux} dF(x) < \infty \quad \text{for} \quad u \in [0, a_F]
 \]
Harris Recurrence in SPNs

- **Embedded chain:** \(\{ (S_n, C_n) : n \geq 0 \} \) observed only at transitions to timed markings
- \(\bar{\phi}(\{s\} \times A) = \text{Lebesgue measure of } A \cap [0, \bar{x}]^M \)
- **Theorem:** If Assumption PD(1) holds, then the embedded chain is positive Harris recurrent with recurrence measure \(\bar{\phi} \)
- Implies \(P_\mu \{ S_n = s \text{ i.o.} \} = 1 \) for all \(s \in S \)
- **Proof:**
 - First assume no immediate transitions
 - Show that embedded chain is “\(\bar{\phi} \)-irreducible”
 - Establish Lyapunov drift condition and apply MC machinery
 - Extend to case of immediate transitions using strong mimicry
- **Alternate approach to recurrence:** geometric-trials arguments
 - Can drop positive-density assumption
 - Use detailed analysis of specific SPN structure
A Surprising Recurrence Result [Glynn and Haas 2007]

- $S_n =$ marking just after nth marking change
- Conjecture: $P \{ S_n = s \text{ i.o.} \} = 1$ for each s if
 - Marking set S is finite
 - SPN is irreducible
 - $\exists \bar{x} > 0$ s.t. each $F(\cdot; e)$ has positive density on $(0, \bar{x})$
- CONJECTURE IS FALSE!
 - In the presence of heavy-tailed clock-setting dist’ns
The Counterexample

- \(S = \{(2, 1, 1), (1, 2, 1), (1, 1, 2)\} \)
- \(p(s'; s, e^*) = 0 \) or \(1 \)
 (see schematic diagram)
- Clock-setting distributions:
 - \(F(t; e_1) = 1 - (1 + t)^{-\alpha} \)
 - \(F(t; e_2) = 1 - (1 + t)^{-\beta} \)
 - \(F(\cdot; e_3) \) is Uniform[0, \(a \)]

 with \(\beta > 1/2 \) and \(\alpha + \beta < 1 \)
- SPN hits marking \(s = (1, 2, 1) \) only if:
 - \(e_1 \) occurs and then \(e_2 \) occurs
 - No intervening occurrence of \(e_3 \)
- Theorem: \(P\{S_n = (1, 2, 1) \) i.o. \} = 0
Another Type of Stability: Limit Theorems

- **Theorem (SLLN):** If Assumption PD(1) holds, then for any \(f \)
 \[
 \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} f(X(u)) \, du = r(f) \text{ a.s.}
 \]

- **Theorem (FCLT):** If Assumption PD(2) holds, then for any \(f \)
 \[
 U_\nu(f) \Rightarrow \sigma(f) W \quad \text{as } \nu \to \infty
 \]
 \[
 U_\nu(f)(t) = \nu^{-1/2} \int_{0}^{\nu t} \left(f(X(u)) - r(f) \right) \, du
 \]
 \[
 \Rightarrow \text{ denotes weak convergence on } C[0, \infty)
 \]
 \[
 W = \text{standard Brownian motion on } [0, \infty)
 \]
 \[
 \text{“Functional” form of CLT (ordinary CLT is a special case)}
 \]

- **Note:** \(r(f) \) and \(\sigma(f) \) are independent of initial conditions

- **Follows from general result in [Glynn and Haas 2006]**
 - Uses results for Harris recurrent MCs
FCLT Example: Donsker’s Theorem

\[S_n = \sum_{i=0}^{n} X_i \]
Part VI

Steady-State Simulation
A regenerative process can be decomposed into i.i.d. cycles

System “probabilistically restarts” at each T_i
 - Ex: successive arrival times to an empty GI/G/1 queue

Analogous definition for discrete-time process $\{X_n : n \geq 0\}$

Extension: one-dependent cycles
 - Harris recurrent chains are od-regenerative (basis for previous SLLN and FCLT)
Regenerative Simulation: The Ratio Formula

Let

\[Y_i = \int_{T_{i-1}}^{T_i} f(X(u)) \, du \quad \text{and} \quad \tau_i = T_i - T_{i-1} \]

\((Y_1, \tau_1), (Y_2, \tau_2), \ldots \) are i.i.d. pairs

It follows that

\[\frac{1}{T_n} \int_0^{T_n} f(X(u)) \, du = \frac{\sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} \tau_i} = \frac{\bar{Y}_n}{\bar{\tau}_n} \to \frac{E[Y_1]}{E[\tau_1]} \overset{\text{def}}{=} r \]

almost surely as \(n \to \infty \) (need \(E[\tau_1] < \infty \))

Can show that

\[\frac{1}{t} \int_0^{t} f(X(u)) \, du \to r \text{ a.s. as } t \to \infty \]

If \(\tau_1 \) is “aperiodic”, then \(X(t) \Rightarrow X \) and \(E[f(X)] = r \)
Regenerative Simulation: The Regenerative Method

▶ **Point estimate** (biased): \(\hat{r}_n = \bar{Y}_n / \bar{\tau}_n \):
 - \(\hat{r}_n \to r \text{ a.s. as } n \to \infty \) (strong consistency)

▶ **Confidence interval**
 - Set \(Z_i = Y_i - r \tau_i \)
 - \(Z_1, Z_2, \ldots \) i.i.d. with \(E[Z_i] = 0 \) and \(\text{Var}[Z_1] = \sigma^2 \)
 - Apply Central Limit Theorem (CLT) for i.i.d. random variables:

\[
\frac{\sqrt{n}(\hat{r}_n - r)}{\sigma / E[\tau_1]} \Rightarrow N(0, 1) \quad \text{and} \quad \frac{\sqrt{n}(\hat{r}_n - r)}{s_n / \bar{\tau}_n} \Rightarrow N(0, 1)
\]

as \(n \to \infty \), where \(s_n \) estimates \(\sigma \) (we assume \(\sigma^2 < \infty \))

▶ 100\(p\)% asymptotic confidence interval:

\[
\left[\hat{r}_n - \frac{z_p s_n}{\bar{\tau}_n \sqrt{n}}, \hat{r}_n + \frac{z_p s_n}{\bar{\tau}_n \sqrt{n}} \right],
\]

where \(P \{ -z_p \leq N(0, 1) \leq z_p \} = p \), i.e., \((1 + p)/2 \) quantile

▶ **Many extensions**: bias reduction, fixed-time or fixed-precision, generalized \(Y \) and \(\tau \), estimate \(\alpha = g(E[Y], E[\tau]) \), ...
Regenerative Simulation of SPNs

- A marking \bar{s} is a **single state** if $E(\bar{s}) = \{ \bar{e} \}$
- Define $\theta(k) = k$th marking change at which \bar{e} fires in \bar{s}
- Set $T_k = \zeta_{\theta(k)}$ and $\tau_k = T_k - T_{k-1}$
- **Theorem**: Suppose Assumption PD(2) holds and SPN has a single state \bar{s}
 - Random times $\{ T_k : k \geq 0 \}$ form sequence of regeneration points for marking process
 - Finite expected cycle length: $E_{\mu}[\tau_1] < \infty$
 - Finite variance constant for any f:
 $$\sigma^2(f) = \text{Var}_{\mu} \left[\int_{T_0}^{T_1} f(X(u)) \, du - r\tau_1 \right] < \infty$$
- Can therefore apply standard regenerative method
- **Variant theorems are available**
 - Variants of single state (e.g., memoryless property)
 - Other recurrence conditions (geometric trials)
 - Discrete-time results
The Method of Batch Means

- Simulate system to (large) time $t = mv$ (where $10 \leq m \leq 20$)
- Divide into m batches of length v and compute batch means:

$$
\bar{Y}_i = \frac{1}{v} \int_{(i-1)v}^{iv} f(X(u)) \, du
$$

- Treat $\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_m$ as i.i.d., $N(\mu, \sigma^2)$:
 - Point estimate: $\hat{r}_t = \frac{1}{m} \sum_{i=1}^{m} \bar{Y}_i$
 - $100p\%$ confidence interval:

$$
\left[\hat{r}_t - \frac{t_{p,m-1} s_m}{\sqrt{m}}, \hat{r}_t + \frac{t_{p,m-1} s_m}{\sqrt{m}} \right],
$$

where $t_{p,m-1} = (1 + p)/2$ quantile of Student’s T dist’n
Batch Means, Continued

Why might batch means work?
Formally, want to show
- Consistency of \hat{r}_t and validity of CI as $t \to \infty$
- For m fixed (standard batch means)
- What if $m = m(t)$? Overlapping batches?

Special case of standardized-time-series methods
Standardized Time Series

- Consider a mapping $\xi : C[0, 1] \mapsto \mathbb{R}$ such that
 - $\xi(ax) = a\xi(x)$ and $\xi(x - be) = \xi(x)$, where $e(t) = t$
 - $P\{\xi(W) > 0\} = 1$ and $P\{W \in D(\xi)\} = 0$
- Set $\bar{Y}_\nu(t) = (1/\nu) \int_0^t f(X(u)) \, du$ and $\hat{r}_\nu = \bar{Y}_\nu(1)$
- Theorem: If Assumption PD(2) holds, then r exists and

$$
\frac{\hat{r}_\nu - r}{\xi(\bar{Y}_\nu)} = \frac{\sqrt{\nu}(\hat{r}_\nu - r)}{\xi(\sqrt{\nu}(\bar{Y}_\nu - re))} \Rightarrow \frac{\sigma W(1)}{\sigma \xi(W)} = \frac{W(1)}{\xi(W)},
$$

so that an asymptotic 100$p\%$ confidence interval for r is

$$
[\hat{r}_\nu - \xi(\bar{Y}_\nu)z_p, \hat{r}_\nu + \xi(\bar{Y}_\nu)z_p],
$$

where $P\{-z_p \leq W(1)/\xi(W) \leq z_p\} = p$
- Different choices of ξ yield different estimation methods
 - batch means (fixed # of batches)
 - STS area method, STS maximum method
Consistent-Estimation Methods (Discrete Time)

- Set $\hat{r}_n = (1/n) \sum_{j=0}^{n-1} \tilde{f}(S_j, C_j)$ and suppose that

$$\lim_{n \to \infty} \hat{r}_n = \tilde{r} \text{ a.s. and } \frac{\sqrt{n}(\hat{r}_n - \tilde{r})}{\tilde{\sigma}} \Rightarrow N(0, 1)$$

- If we can find a consistent estimator $V_n \Rightarrow \tilde{\sigma}^2$, then

$$\frac{\sqrt{n}(\hat{r}_n - \tilde{r})}{V_n^{1/2}} \Rightarrow N(0, 1)$$

- Then an asymptotic 100$p\%$ confidence interval for \tilde{r} is

$$\left[\hat{r}_n - \frac{z_p}{\sqrt{n}} V_n^{1/2}, \hat{r}_n + \frac{z_p}{\sqrt{n}} V_n^{1/2}\right],$$

where $z_p = (1 + p)/2$ quantile of $N(0, 1)$

- Narrower asymptotic confidence intervals than STS methods
Consistent-Estimation Methods for SPNs

- Look at polynomially dominated functions:
 \[
 \tilde{f}(s, c) = O(1 + \max_{1 \leq i \leq M} c_i^q) \quad \text{for some } q \geq 0
 \]

- Require aperiodicity: no partition of marking set \(G \) s.t.
 \(G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_d \rightarrow G_1 \rightarrow G_2 \rightarrow \cdots \)

- Focus on “localized quadratic-form variance estimators”
 - Quadratic-form:
 \[
 V_n = \sum_{i=0}^{n} \sum_{j=0}^{n} \tilde{f}(S_i, C_i)\tilde{f}(S_j, C_j)q_{i,j}^{(n)}
 \]
 - Localized:
 \[
 |q_{i,j}^{(n)}| \leq \begin{cases}
 a_1/n & \text{if } |i - j| \leq m(n); \\
 a_2(n)/n & \text{if } |i - j| > m(n)
 \end{cases}
 \]
 where \(a_2(n) \rightarrow 0 \) and \(m(n)/n \rightarrow 0 \)
Theorem: For an aperiodic SPN, suppose that

- Assumption PDE holds (\(\exists \) invariant distribution \(\pi \))
- \(\{ \tilde{f}(S_n, C_n) : n \geq 0 \} \) obeys a CLT with variance constant \(\tilde{\sigma}^2 \)
- \(V_n \) is a localized quadratic-form estimator of \(\tilde{\sigma}^2 \)
- \(V_n \Rightarrow \tilde{\sigma}^2 \) when initial distribution = \(\pi \)

Then \(V_n \Rightarrow \tilde{\sigma}^2 \) for any initial distribution

Proof:

- \(\{ (S_n, C_n) : n \geq 0 \} \) couples with stationary version
- Localization: difference between \(V_n \) versions becomes negligible

Consequence: can exploit existing consistency results for stationary output
Coupling Harris-Ergodic Markov Chains

\[Z_n(\lambda) \]

\[Z_n(\mu) \]
Application to Specific Variance Estimators

- **Variable batch means estimator of** $\tilde{\sigma}^2$:
 - $b(n)$ batches of $m(n)$ observations each
 - VBM estimator is consistent if Assumption PDE holds, \tilde{f} is polynomially dominated, $b(n) \to \infty$, and $m(n) \to \infty$.

- **Spectral estimator of** $\tilde{\sigma}^2$:
 - Form of estimator: $V_n^{(S)} = \sum_{h=-\infty}^{m-1} \lambda(h/m) \hat{R}_h$
 - $\hat{R}_h =$ sample lag-h autocorrelation of $\{ \tilde{f}(S_n, C_n): n \geq 0 \}$
 - $\lambda(\cdot) =$ “regular” window function (Bartlett, Hanning, Parzen)
 - $m = m(n) =$ spectral window length
 - Spectral estimator is consistent if Assumption PDE holds, \tilde{f} is polynomially dominated, $m(n) \to \infty$, and $m(n)/n^{1/2} \to 0$

- **Overlapping batch means**: asymp. equivalent to spectral

- Can extend results to **continuous time** (and drop aperiodicity)
Want to estimate \(\lim_{n \to \infty} \left(\frac{1}{n} \sum_{j=0}^{n-1} f(D_j) \right) \)

Delays \(D_0, D_1, \ldots \) “determined by marking changes of the net”

Specified as \(D_j = B_j - A_j \)

- **Starts:** \(\{ A_j = \zeta_{\alpha(j)} : j \geq 0 \} \) nondecreasing
- **Terminations:** \(\{ B_j = \zeta_{\beta(j)} : j \geq 0 \} \)
- Determined by \(\{ (S_n, C_n) : n \geq 0 \} \)

Measuring lengths of delay intervals is nontrivial

- Must link starts and terminations
- Multiple ongoing delays
- Overtaking: delays need not terminate in start order
- Can avoid for limiting average delay \(\lim_{n \to \infty} \left(\frac{1}{n} \sum_{j=0}^{n-1} D_j \right) \)

Measurement methods: tagging and start vectors
Tagging
Start Vectors

- Assume \# of ongoing delays = \(\psi(s) \) when marking is \(s \)
- \(V_n \) records starts for all ongoing delays at \(\zeta_n \)
- Positions of starts = position of entities in system (usually)
- Use -1 as placeholder
- At each marking change:
 - Insert current time according to \(i_{\alpha}(s'; s, E^*) \)
 - Delete components according to \(i_{\beta}(s'; s, E^*) \)
 - Permute components according to \(i_{\pi}(s'; s, E^*) \)
 - Subtract deleted components from current time to compute delays (ignore -1’s)
Start Vector Example

\[T = 2.9 \]

\[V_5 = (2.9, 2.4, 0) \]

\[D = 2.9 - 1.2 = 1.7 \]
Regenerative Methods: The Easy Case

▶ Assume SPN has single state and “well behaved” cycles
▶ Use standard regenerative method
Regenerative Methods: The Hard Case

- Assume SPN has single state and “well behaved” cycles
- Decompose delays into one-dependent cycles
- Use extended regenerative method or multiple-runs method
Limiting Average Delay

- Under appropriate regularity conditions

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} D_j = \frac{E_\mu[Z_1]}{E_\mu[\delta_1]} \text{ a.s.}$$

- $\delta_1 =$ # of starts in regenerative cycle
- $Z_1 = \int_{\text{cycle}} \psi(X(t)) \, dt$
- $\psi(s) =$ # of ongoing delays when marking is s
- $(Z_1, \delta_1), (Z_2, \delta_2), \ldots$ are i.i.d.

- Can use standard regenerative method
- No need to measure individual delays
- One proof of this result uses Little’s Law
STS Methods for Delays

- Focus on “regular” start-vector mechanism
- Use polynomially-dominated functions $f: \mathbb{R}_+ \mapsto \mathbb{R}$:
 \[|f(x)| = O(1 + x^q) \text{ for some } q \geq 0 \]
- **Theorem**: If Assumption PDE holds, then
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(D_j) = r \text{ a.s.} \quad \text{and} \quad U_n(f) \Rightarrow \sigma(f)W
 \]
 where $U_n(f)(t) = n^{-1/2} \int_0^t (f(D_{\lfloor u \rfloor}) - r) \, du$
- **Proof**: Identify one-dependent cycles
- Apply limit theorems for od-regenerative processes
Colored SPNs

- Tokens have color and transitions fire “in a color”
- Yields more concise graphs
- “Symmetry with respect to color”
 - Captures variety of system symmetries
 - Can exploit to improve simulation efficiency
 - Shorter regenerative cycle lengths
 - Shorter CIs for delays
 Ex: delay for port 1 in symmetric token ring
Part VII

Conclusion
Summary

- **SPNs are an attractive framework for simulation**
 - User-friendly graphical orientation
 - Powerful and flexible modeling tool
 - Solid mathematical basis
- **Efficiency in sample-path generation**
- **Simulation theory: building-block conditions for**
 - Stability (recurrence, limit theorems)
 - Validity of simulation methods
- **Simulation methods:**
 - Regenerative
 - Standardized time series (batch means)
 - Consistent-estimation methods (spectral and VBM)
- **Further resources**
 - INFORMS College on Simulation (http://www.informs-cs.org)
 - www.almaden.ibm.com/cs/people/peterh