Large Scale Graph Processing with Apache Giraph

Sebastian Schelter

Invited talk at GameDuell Berlin
29th May 2012
PhD student at the Database Systems and Information Management Group (DIMA) of TU Berlin

- Stratosphere, database inspired approach to a next generation large scale processing system, joint research project with HU Berlin and HPI Potsdam
- European Research Project ‘ROBUST’ dealing with the analysis of huge-scale online business communities

involved in open source as committer and PMC member of Apache Mahout and Apache Giraph
Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel
4) Apache Giraph
5) Outlook: everything is a network
Graph recap

graph: abstract representation of a set of objects (**vertices**), where some pairs of these objects are connected by links (**edges**), which can be directed or undirected.

Graphs can be used to model arbitrary things like road networks, social networks, flows of goods, etc.

Majority of graph algorithms are iterative and traverse the graph in some way.
The Web

• the World Wide Web itself can be seen as a huge graph, the so called web graph
 – pages are vertices connected by edges that represent hyperlinks
 – the web graph has several billion vertices and several billion edges

• the success of major internet companies such as Google is based on the ability to conduct computations on this huge graph
Google’s PageRank

• success factor of Google’s search engine:
 – much **better ranking of search results**

• ranking is based on **PageRank**, a graph algorithm computing the ‘importance’ of webpages
 – simple idea: **look at the structure of the underlying network**
 – important pages have a lot of links from other important pages

• major technical success factor of Google: ability to conduct **web scale graph processing**
Social Networks

• on facebook, twitter, LinkedIn, etc, the users and their interactions form a **social graph**
 – users are **vertices** connected by **edges** that represent **some kind of interaction** such as friendship, following, business contact

• fascinating research questions:
 – what is the structure of these graphs?
 – how do they evolve over time?

• analysis requires knowledge in both computer science and social sciences
six degrees of separation

• **small world problem**
 – through how many social contacts do people know each other on average?

• **small world experiment** by Stanley Milgram
 – task: deliver a letter to a recipient whom you don’t know personally
 – you may forward the letter only to persons that you know on a first-name basis
 – how many contacts does it take on average until the letter reaches the target?

• **results**
 – it took 5.5 to 6 contacts on average
 – confirmation of the popular assumption of ’six degrees of separation‘ between humans
 – experiment criticised due to small number of participants, possibly biased selection
four degrees of separation

- the small word problem as a graph problem in social network analysis
 - what is the average distance between two users in a social graph?

- in early 2011, scientists conducted a **world scale experiment** using the Facebook social graph
 - 721 million users, 69 billion friendships links
 - result: average distance in Facebook is 4.74
 → 'four degrees of separation'

→ large scale graph processing gives unpredecented opportunities for the social sciences
Overview

1) Graphs

2) **Graph processing with Hadoop/MapReduce**

3) Google Pregel

4) Apache Giraph

5) Outlook: everything is a network
Why not use MapReduce/Hadoop?

- MapReduce/Hadoop is the current standard for data intensive computing, why not use it for graph processing?

- Example: **PageRank**
 - defined *recursively*
 - each vertex distributes its authority to its neighbors in equal proportions

\[
p_i = \sum_{j \in \{(j,i)\}} \frac{p_j}{d_j}
\]
Textbook approach to PageRank in MapReduce

- PageRank p is the principal eigenvector of the Markov matrix M defined by the transition probabilities between web pages.
- It can be obtained by iteratively multiplying an initial PageRank vector by M (power method).

$$p_{i+1} = Mp_i$$
Drawbacks

• **Not intuitive**: only crazy scientists think in matrices and eigenvectors

• **Unnecessarily slow**: Each iteration is a single MapReduce job with lots of overhead
 – separately scheduled
 – the graph structure is read from disk
 – the intermediary result is written to HDFS

• **Hard to implement**: a join has to be implemented by hand, lots of work, best strategy is data dependent
Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) **Google Pregel**
4) Apache Giraph
5) Outlook: everything is a network
Google Pregel

- distributed system especially developed for large scale graph processing
- intuitive API that let’s you `think like a vertex`
- **Bulk Synchronous Parallel** (BSP) as execution model
- fault tolerance by **checkpointing**
Bulk Synchronous Parallel (BSP)

- **Local computation**
- **Communication**
- **Barrier synchronization**

Processors are synchronized across a superstep.
Vertex-centric BSP

- each vertex has an id, a value, a list of its adjacent neighbor ids and the corresponding edge values
- each vertex is invoked in each superstep, can recompute its value and send messages to other vertices, which are delivered over superstep barriers
- advanced features: termination votes, combiners, aggregators, topology mutations
Master-slave architecture

- Vertices are partitioned and assigned to workers
 - Default: hash-partitioning
 - Custom partitioning possible

- **Master** assigns and coordinates, while **workers** execute vertices and communicate with each other
PageRank in Pregel

class PageRankVertex {
 void compute(Iterator messages) {
 if (getSuperstep() > 0) {
 // recompute own PageRank from the neighbors messages
 pageRank = sum(messages);
 setVertexValue(pageRank);
 }

 if (getSuperstep() < k) {
 // send updated PageRank to each neighbor
 sendMessageToAllNeighbors(pageRank / getNumOutEdges());
 } else {
 voteToHalt(); // terminate
 }
 }
}

\[p_i = \sum_{j \in \{(j,i)\}} \frac{p_j}{d_j} \]
PageRank toy example

Superstep 0

Superstep 1

Superstep 2

Input graph
Cool, where can I download it?

• Pregel is proprietary, but:
 – Apache Giraph is an open source implementation of Pregel
 – runs on standard Hadoop infrastructure
 – computation is executed in memory
 – can be a job in a pipeline (MapReduce, Hive)
 – uses Apache ZooKeeper for synchronization
Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel
4) Apache Giraph
5) Outlook: everything is a network
Giraph’s Hadoop usage
Anatomy of an execution

Setup
- load the graph from disk
- assign vertices to workers
- validate workers health

Compute
- assign messages to workers
- iterate on active vertices
- call vertices compute()

Synchronize
- send messages to workers
- compute aggregators
- checkpoint

Teardown
- write back result
- write back aggregators
Who is doing what?

- **ZooKeeper**: responsible for **computation state**
 - partition/worker mapping
 - global state: #superstep
 - checkpoint paths, aggregator values, statistics

- **Master**: responsible for **coordination**
 - assigns partitions to workers
 - coordinates synchronization
 - requests checkpoints
 - aggregates aggregator values
 - collects health statuses

- **Worker**: responsible for **vertices**
 - invokes active vertices compute() function
 - sends, receives and assigns messages
 - computes local aggregation values
Example: finding the connected components of an undirected graph

- algorithm: propagate smallest vertex label to neighbors until convergence

- in the end, all vertices of a component will have the same label
Step 1: create a custom vertex

```java
public class ConnectedComponentsVertex extends BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> {
    public void compute(Iterator messages) {
        int currentLabel = getVertexValue().get();
        while (messages.hasNext()) {
            int candidate = messages.next().get();
            currentLabel = Math.min(currentLabel, candidate); // compare with neighbors labels
        }
        // propagation is necessary if we are in the first superstep or if we found a new label
        if (getSuperstep() == 0 || currentLabel != getVertexValue().get()) {
            setVertexValue(new IntWritable(currentLabel));
            sendMsgToAllEdges(getVertexValue()); // propagate newly found label to neighbors
        }
        voteToHalt();  // terminate this vertex, new messages might reactivate it
    }
}
```
Step 2: create a custom input format

• input is a text file with adjacency lists, each line looks like: `<vertex_ID> <neighbor1_ID> <neighbor2_ID> ...`

```java
public class ConnectedComponentsInputFormat extends TextVertexInputFormat<IntWritable, IntWritable, NullWritable, IntWritable> {
    static class ConnectedComponentsVertexReader extends TextVertexReader<IntWritable, IntWritable, NullWritable, IntWritable> {
        public BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> getCurrentVertex() {
            // instantiate vertex
            BasicVertex<IntWritable, IntWritable, NullWritable, IntWritable> vertex = ...
            // parse a line from the input and initialize the vertex
            vertex.initialize(...);
            return vertex;
        }
    }
}
```
Step 3: create a custom output format

- output is a text file, each line looks like:

 `<vertex_ID> <component_ID>`

```java
public class VertexWithComponentTextOutputFormat extends TextVertexOutputFormat<IntWritable, IntWritable, NullWritable> {
    public static class VertexWithComponentWriter extends TextVertexOutputFormat.TextVertexWriter<IntWritable, IntWritable, NullWritable> {
        public void writeVertex(BasicVertex<IntWritable, IntWritable, NullWritable, ?> vertex) {
            // write out the vertex ID and the vertex value
            String output = vertex.getVertexId().get() + '	' + vertex.getVertexValue().get();
            getRecordWriter().write(new Text(output), null);
        }
    }
}
```
Step 4: create a combiner (optional)

- we are only interested in the smallest label sent to a vertex, therefore we can apply a combiner

```java
public class MinimumIntCombiner extends VertexCombiner<IntWritable, IntWritable> {
    public Iterable<IntWritable> combine(IntWritable target, Iterable<IntWritable> messages) {
        int minimum = Integer.MAX_VALUE;
        // find minimum label
        for (IntWritable message : messages) {
            minimum = Math.min(minimum, message.get());
        }
        return Lists.<IntWritable>newArrayList(new IntWritable(minimum));
    }
}
```
Experiments

– Setup: 6 machines with 2x 8core Opteron CPUs, 4x 1TB disks and 32GB RAM each, ran 1 Giraph worker per core
– Input: Wikipedia page link graph (6 million vertices, 200 million edges)

– PageRank on Hadoop/Mahout
 • 10 iterations approx. 29 minutes
 • average time per iteration: approx. 3 minutes

– PageRank on Giraph
 • 30 iterations took approx. 15 minutes
 • average time per iteration: approx. 30 seconds

→ 10x performance improvement
hardware utilization
Connected Components

• execution takes approx. 4 minutes
 – subsecond iterations after superstep 5
 → Giraph exploits small average distance!
Overview

1) Graphs
2) Graph processing with Hadoop/MapReduce
3) Google Pregel
4) Apache Giraph
5) **Outlook: everything is a network**
Everything is a network!
distributed matrix factorization

- **decompose matrix** A into product of **two lower dimensional feature matrices** R and C

\[
A = R \times C^T
\]

- **master algorithm**: dimension reduction, solving least squares problems, compressing data, collaborative filtering, latent semantic analysis, ...
Alternating Least Squares

• minimize squared error over all known entries:

\[f(R, C) = \sum_{i,j \in A} (a_{ij} - r_i^T c_j)^2 \]

• Alternating Least Squares
 – fix one side, solve for the other, repeat until convergence
 – easily parallelizable, iterative algorithm

• what does this all have to with graphs?
matrices can be represented by graphs

- represent matrix as bipartite graph

\[
\begin{bmatrix}
2 & - & 5 \\
- & - & 7 \\
1 & 3 & -
\end{bmatrix}
\]

row 1 row 2 row 3

2 5 3 7 1

column 1 column 2 column 3

- now the ALS algorithm can easily be implemented as a Giraph program
 - every vertex holds a row vector of one of the feature matrices
 - in each superstep the vertices of one side recompute their vector and send it to the connected vertices on the other side
What’s to come?

• Current and future work in Giraph
 – out-of-core messaging
 – algorithms library
Thank you. Questions?

Database Systems and Information Management Group (DIMA), TU Berlin