Large-scale (512kbit) integration of Multilayer-ready Access-Devices based on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% yield

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (†IBM T. J. Watson Research Center, Yorktown Heights, NY 10598)
Tel: (408) 927–1512, Fax: (408) 927–2100, E-mail: burr@almaden.ibm.com

Abstract

BEOL-friendly Access Devices (AD) based on Cu-containing MIEC materials [1–4] are integrated in large (512 × 1024) arrays at 100% yield, and are successfully co-integrated together with Phase Change Memory (PCM). Numerous desirable attributes are demonstrated: the large currents (>200 µA) needed for PCM, the bipolar operation required for high-performance RRAM, the single-target sputter deposition essential for high-volume manufacturing, and the ultra-low leakage (< 10 pA) and high voltage margin (1.5 V) needed to enable large crosspoint arrays.

Keywords: Access device, MIEC, PCM, NVM, RRAM, MRAM

Introduction

For PCM, RRAM, MRAM, or any other nonvolatile memory (NVM) to be as cost-effective as NAND FLASH (<4F²/3), 3D-stacking of large crosspoint arrays in the BEOL will be essential. Previously [1,2], we have shown that MIEC-based ADs exhibit the large ON/OFF ratios that enable these large crosspoint arrays (Fig. 1), with high voltage margin \(V_{	ext{m}} \) (for which leakage stays below 10 nA), ultra-low leakage (< 10 pA), and high enough current densities even for PCM. In addition, these devices show bipolar diode-like characteristics, making them uniquely suited for stacking high-density MRAM and RRAM in the BEOL.

MIEC AD demonstrations shown to date have been encouraging but at research-scale, with small (5 × 10) arrays of ADs integrated without any NVM. In this paper, we show that MIEC ADs support both processing temperatures up to 500 °C and the single-target sputter deposition needed in manufacturing, and demonstrate process improvements that provide both lower leakage and wider voltage margins. Furthermore, we demonstrate small device arrays with co-integrated MIEC and PCM devices, as well as large-scale (512kbit) arrays of integrated MIEC ADs at 100% yield.

MIEC device fabrication and process improvements

All MIEC-based ADs presented here (Fig. 2) are integrated on 8” wafers, using sputter-deposition of Cu-containing MIEC material into vias followed by an optimized CMP process [2] and a confined, non-ionizable TEC (Fig. 2(a)). Short-loop devices (Fig. 2(b)) have minimal wiring and are tested with Conductive-AFM. While our multi-target-capable PVD tool has allowed us to easily fabricate different MIEC materials [2], short-loop devices deposited from a single target, as required for volume manufacturing, show near-identical device characteristics (Fig. 3). Cumulative post-fabrication anneals up to 500 °C are also shown to have minimal effect on device yield, as measured over >1000 short-loop devices (Fig. 4), providing a wide processing window.

Process improvements developed in short-loop devices can be transferred to integrated 8” wafers containing small arrays of 180nm-node FETs (Fig. 2(c)). Fig. 5 illustrates the improvement in per-device leakage on an all-good array of 5 × 10 MIEC-based ADs after electrode optimization. While voltage margin \(V_{	ext{m}} \) as measured at 10nA is effectively unchanged, the voltage windows at both 10pA and 100pA are markedly improved. Further process improvements have led to much larger voltage margins (\(V_{	ext{m}} = 1.5 \text{V} \)), sufficient for PCM, RRAM, and MRAM (Fig. 6).

MIEC devices integrated with PCM

MIEC-based ADs were also integrated immediately above ring-electrode mushroom-cell (CD~35nm) Phase-Change Mem-
Fig. 1 In an NVM crosspoint array, the Access Device (AD) must supply high current for program/erase of a selected cell yet low-leakage for all other cells, including those half-selected. A voltage margin \(V_{m} \) of 1.5V would be sufficient for PCM, RRAM, and MRAM.

Fig. 2 MIEC-based ADs are integrated on 8" wafers, with MIEC material sputter-deposited into vias followed by an optimized CMP process[2] and a confined, non-ionizable TEC (a). Short-loop devices (b) have minimal wiring and are tested with Conductive-AFM, while integrated 180nm FETs allow (c) small (5 ×10) arrays of MIEC ADs to be tested. Mushroom-cell PCM devices with ~35nm CD heater electrodes (d) were integrated with the keyhole-transfer method[5], followed by the MIEC AD. Completion of (d) dual-damascene copper M2 wiring allowed testing of large Array Diagnostic Monitor (ADM) arrays up to 512×1024 in size, either with or without PCM.

Fig. 3 Short-loop ADs show that Cu-containing MIEC material deposited from a single-target has identical (or even improved) I-V characteristics to our POR ADs (deposited from multiple targets).

Fig. 4 Cumulative distributions of \(V_{m} \) over >1000 short-loop MIEC-based ADs after successive high-temperature anneals.

Fig. 5 Slow measurements on entire all–good arrays of ~50 integrated MIEC ADs reveal that already-low leakage currents can be further suppressed through electrode optimization.

Fig. 6 I-V characteristics show voltage margins \(V_{m} = 1.50V \) (at 10nA) for short-loop ADs fabricated with extensive process improvements.

Fig. 8 Endurance of an integrated PCM+MIEC device-pair to >100k cycles, with RESET currents >200µA and 5µs-long SET pulses (~90µA). No AD degradation had occurred at the time testing was terminated.

Fig. 9 Integrated 1-bit sense-amplifiers allow a fast electrical tester (Magnum 2EV) to bi-directionally query ADM devices.

Fig. 10 Array level I-V results across a 512×1024 array of integrated MIEC ADs show tight distributions. Cumulative distribution functions (CDFs) across bitline voltage \(V_{BL} \) at various device currents \(I_{ref} \) are combined; by using 1024×1024 addresses, all 512×1024 MIEC ADs can be addressed in both polarities.

Fig. 11 Within this same 512×1024 array, there were no leaky devices: 100% of the array showed \(V_{m} > 1.1V \). 99.95% of MIEC ADs had voltage margins \(V_{m} \) at 10nA within ±150mV of the median of 1.36V.