ABSTRACT

An accredited biennial 2014 study by the Association of Certified Fraud Examiners claims that on average 5% of a company’s revenue is lost because of unchecked fraud every year. The reason for such heavy losses are that it takes around 18 months for a fraud to be caught and audits catch only 3% of the actual fraud. This begs the need for better tools and processes to be able to quickly and cheaply identify potential malefactors. In this paper, we describe a robust tool to identify procurement related fraud/risk, though the general design and the analytical components could be adapted to detecting fraud in other domains. Besides analyzing standard transactional data, our solution analyzes multiple public and private data sources leading to wider coverage of fraud types than what generally exists in the marketplace. Moreover, our approach is more principled in the sense that the learning component, which is based on investigation feedback has formal guarantees. Though such a tool is ever evolving, a deployment of this tool over the past 12 months has found many interesting cases from compliance risk and fraud point of view across more than 150 countries and 65000+ vendors, increasing the number of true positives found by over 80% compared with other state-of-the-art tools that the domain experts were previously using.

Categories and Subject Descriptors
H.2.8 [Knowledge Management]: Data Mining

General Terms
Algorithms

Keywords
Fraud, risk, collusion, social network, online learning, big data, procurement

1. INTRODUCTION

In ideal circumstances, business is carried out between vendors and customers in a manner which is fair and consistent with the law. In practice, however, fair business practices can be subject to fraud, or deliberate deception by one or more individuals or parties for personal gain and/or to cause harm to others persons or parties. A result is an illegal and unfair advantage for a party committing fraud.

Given the subversive nature of fraud, such activities can be well hidden and difficult to identify and trace to the responsible parties. Routing out the cause, including identifying entities indicative of fraud, can be a difficult if not sometimes an insurmountable task. This is mirrored in an accredited 2014 survey conducted across 100+ countries, by the Association of Certified Fraud Examiners (ACFE) [1], who claim that on average 5% of a company’s revenue is lost because of unchecked fraud every year. The reason for such heavy losses according to them is that it takes around 18 months for a fraud to be caught and audits catch only 3% of the actual fraud. A large portion of risky activity is caught through whistle blowers. This begs the need for better tools and processes to quickly and cheaply identify potential malefactors.

In the modern era, a phenomenal amount of digital data is involved in nearly every type of business. Modern developments in both software and hardware have allowed for data analysis techniques to be developed and directed to detecting and identifying fraud and its perpetrators. In the art of fraud detection and risk analysis, analytical systems are developed and relied upon to analyze data and make predictions as to the presence of risk/fraud. Despite considerable advances in fraud detection, the ways in which parties can commit fraud have also advanced and become more elusive. There is a persisting need for novel techniques and systems for the detection and identification of fraud and the conspirators responsible, that have a low false positive rate.

We describe one such system in this paper. Though our system architecture and analytics flow would be applicable
in a wide variety of domains, we focus our attention on identifying procurement related risk or fraud. In large companies there are procurement groups, which buy goods and services from tens of thousands of vendors/suppliers all across the globe every year amounting to billions of dollars of spend. Given the scale of these operations, it is hard to enforce airtight compliance procedures in the interest of time and money, which makes it a breeding ground for nefarious activity. Here are a couple of real examples of procurement fraud. An employee of a large company bought a few USB drives every month at the company’s expense over a couple of years and was selling them in the black market. Since, USB drives are inexpensive they were below the spend clip levels set by the company per purchase order and thus it went undetected for years. Another example was that of a company employee creating a company on his spouse’s maiden name and then routing business to that company.

Studying hundreds of such cases of procurement fraud in the last few years, we created a taxonomy elucidating the broad categories to which these different cases belonged to. This taxonomy is seen in figure 1. The taxonomy, we believe, gives more structure to the problem than just enumerating individual cases. Moreover, it assists us in better understanding the different types of fraud as well as the distribution of the cases across these categories. At a high level there are only two entities namely, company employees and vendors that the company buys from. Hence, fraud occurs through actions of any of the individual entities or through their interactions. In our review of prior fraudulent cases, we found that fraud based on collusion between employee and vendor had the highest occurrence. Collusion essentially is secret or illegal cooperation or conspiracy, especially in order to cheat or deceive others. Relative to procurement, collusion involves at least two parties making an arrangement or agreement which provides at least one of the parties an unfair and illegal competitive advantage. There are a few products that quantify procurement fraud. Based on our study they [3, 9] mostly tackle just the leftmost column in figure 1, that is vendor fraud. Moreover, they are mainly based on business rules with minimal analytics. Others are based on supervised learning [2] and thus require labelled data, which is often unavailable in our setting. A few consulting firms also have products mainly relating to text analytics that scan emails and identify employees based on high risk words or phrases. Certain toolboxes in SPSS statistical outlier detection techniques, unsupervised learning with precious domain expertise comprises of business rules and assigning of importance/weights to different anomalous events. An overview of the analytics flow is depicted in figure 2.

2. SYSTEM DESIGN

In this section, we provide details of our tool. We first discuss the different analytic components followed by an overview of the overall architecture.

2.1 Analytics Flow

As mentioned before, our system analyzes various public and private data. This data maybe structured or unstructured. It may contain independent instances or the instances may be linked. To deal with this different types of data and to come up with a credible list of risky individuals (vendors/employees) we intelligently amalgamate various analytical tools such as text analytics, social network analytics, statistical outlier detection techniques, unsupervised learning and online learning with precious domain expertise comprising of business rules and assigning of importance/weights to different anomalous events. An overview of the analytics flow is depicted in figure 2.

2.1.1 Data Sources

There are multiple data sources that feed our tool. Besides the usual transactional data, we access many private and public sources of data, some of which we now mention. This is by no means an exhaustive list but it outlines many important data sources and showcases the diversity of data used. Here are some private data sources other than transactional data.

- **Vendor Master File**: This document contains information of each of the vendors registered with the company.
company. It has their name, addresses, account numbers, the date of registration and other relevant information.

- **RFx data:** This data source contains information about which bids for a particular product or service were sent out by whom in the company and to which vendors. It also has information about who won the bid and what the competitive prices proposed by the different vendors were. In some cases we may also have fair market value for the specific product or service.

- **Risky Vendor Lists:** These are company specific lists, which contain names of fraudulent or high risk suppliers based mostly on undesirable past experiences. It is desired that business not be conducted with these individuals.

- **Vendor Bank Account Numbers:** This is pretty self explanatory. These are accounts that the company pays to for a product or service delivered. They may be actual account numbers or encrypted for privacy.

- **Vendor-Employee Bank Account Matches:** Employee bank accounts are probably more sensitive than vendor bank accounts and hence, acquiring those from human resources could be difficult. However, if we give them the vendor bank accounts they can return the vendors whose account information matched that of any of the employees.

- **Risky Commodity List:** Commodities are high level groupings of products or services. Certain commodities have less stringent checks (viz. higher clip levels) when buying items in that commodity and thus vendors or employees might indicate their item belongs to one of these commodities, when in fact it does not in an attempt to bypass the required checks. Such commodities are thus deemed as risky and it is important for a tool like ours to take into account this information.

- **Global Clip Levels:** Generally speaking clip levels are dollar amount cutoffs for a particular purchase below which the purchase goes through significantly less checks and approvals than a purchase that is above it. These vary from country to country as well as commodity to commodity. It is important for us to know what these clip levels are for catching potential by-passes.

- **Company Risk Reports:** Certain companies privately release risk reports which reflect the global political landscape. Such reports reveal parts of the world where there might be political or even social instabilities. This information could be useful from a risk point of view as vendors located in an unstable location might interrupt supply or might have more incentive to maximize their earnings in a short period of time given the political volatility.

- **Financial Indices:** Many companies maintain statistics based on maturity, stock trends and other financial yardsticks to determine the health of other companies. This information could be useful for us for the vendors that we are interested in monitoring.

- **Social Networking Data:** Company employee emails in terms of content, who they were sent to and how frequently two parties interacted could be useful information. In terms of external sources, certain businesses
sell information about individuals regarding where all and with whom they lived in the last decade. Also information regarding their spouses and other close relatives is available. Some times public profiles on social networking sites could also be accessed to reveal relations between individuals.

Besides, the proprietary data sources we access also the following public data:

- **Forbidden Parties Lists:** The US government every year releases lists of suspect businesses. The Denied Persons List (DPL) [6] and the Excluded Parties List (EPL) [13] are two of the more widely used ones.

- **Country Perception Indices:** The corruption perception index (CPI) [10] is another public source, which ranks countries based on the levels of corruption faced by people in their daily lives in these countries. This list is created by different experts around the world such as credible analysts and businessmen.

- **Tax Haven Locations List:** This is again self explanatory. Having vendors located in tax haven locations or their bank accounts being present in such locations could be a red flag especially with other digressions.

- **Advanced Search Engine Searches:** Advanced searches on potentially risky vendors/employees could reveal insightful facts about the individual such as recent lifestyle changes, pending lawsuits and other such facts that might otherwise go unnoticed.

- **DUNS Numbers:** Dun & Bradstreet [5] provides a unique DUNS number and DUNS name for each business registered with them. Having a DUNS id provides a certain level of authenticity to the business.

2.1.2 Text Analytics

There are multiple sources that we use which contain unstructured data. In fact, even the standard transactional data which has invoice and purchase order (PO) information, contains text fields which can serve as a rich source of information. In our system we mine this comments field to check if the work was not authorized by the company or that the actual commodity code is different from the actual invoice date, which can be extracted from a comments field entered by an approver other than the requestor. We can also check if there are indications that the work started prior to PO creation or that the actual commodity code is different from what has been entered into the appropriate structured field indicating category.

Other unstructured sources include risk reports, which can be mined to get a feel for the political situation in a certain country or geography. Employee emails can be mined to see if high risk word or phrases have been used in interaction with vendors indicating possible malicious activity.

2.1.3 Anomalous Events Identification

Anomalous events are a combination of expert provided business rules and analytical techniques such as statistical outlier detection techniques and insights derived from text analytics. Each event can be viewed as an independent feature, which gives us additional insight into the level of risk associated with a particular entity. We have 100s of such events and the list is of course ever growing.

It is not possible to enumerate and explain all of these events so we provide a sneak peek into some of them to make lucid the kinds of events we are talking about.

- **Vendor Requestor Monopoly:** This rule checks to see if a high percentage (>90%) of invoices from a particular vendor are approved by a single employee in the company. In this case, there is a higher chance of collusion as a single employee has quite some control in accepting or rejecting the vendor invoices.

- **High Spend Vendors:** In this event we want to identify vendors in each country that we are spending (statistically) significantly more than an average vendor in that country. If such a high spend vendor is especially not an expected one we want to flag him. To account for this, we trigger the event for vendors with whom our yearly spend is above a certain confidence level but below a higher confidence level computed for each country using the corresponding vendor yearly spends.

- **Benfords Test:** Benfords law [4] provides an expected distribution of the frequency of the most significant digit in a sequence of numbers given that they were generated from a real-world process. This distribution has been observed in varied domains such as, in surface areas of rivers, molecular weights, death rates, street addresses.

We can perform statistical testing based on this by comparing the expected distribution with the actual distribution of most significant digit of the invoice numbers for a vendor observed in our data. We can perform the chi-square test, where the null hypothesis states that the invoice numbers were generated from a real source. We trigger the event in this case, if the $p-value \leq 0.05$.

- **PO Create Date after Invoice Date:** A standard procedure is to first create a PO followed by submitting invoices for products sold or services rendered. Sometimes, this procedure may not be followed which is non-compliant behavior. The invoice due dates may be indicated in a structured field, however it is sometimes different from the actual invoice date, which can be extracted from a comments field entered by an approver other than the requestor. We can thus check, if both of these invoice dates, which ideally should be the same, are at least after the PO create date, else we trigger the event.

- **Mix of PO and Non-PO Invoices:** Usually a vendor will provide goods or services with a PO corresponding for each such transaction. For some vendors the goods or services are so cheap and frequent that PO is not required to be created. However, having a mix of both is a red flag since, vendors would belong to one of these categories.

- **Invoices with Risky Commodity Code:** As described in the data sources subsection, certain commodity codes
have higher clip levels after which they go through stringent checks. To bypass these checks an incorrect high clip level commodity may be entered for an invoice, which would trigger this event.

- **Country Corruption**: This event is triggered for countries with CPI below 50. The confidence that is computed for this event is described in the next subsection.

- **Unfair Win**: Once a bid is thrown by a company, if the vendor that wins the bid demands significantly more than the historical/fair market price, then we trigger this event.

2.1.4 Initial Importance Weighting and Confidences of Events

We mentioned before that we do not have labeled data. Hence, we cannot train a supervised model to rank entities based on a fraud score. To limit the number of false positives we come up with an initial weighting signifying the importance of the different events using a combination of domain expertise and the frequency of occurrence of the different events. In particular, we derive a weight in $[0, 1]$, where a higher weight indicates that the event is more important in identifying fraud. These weights are based on evaluation of the events with experts and us devaluing events that occur frequently based on our analysis of real data.

In the design, we insist on weights of individual events being normalized i.e., between $[0, 1]$, so that they are interpretable. The weight of an event can be viewed as the probability that a fraud has occurred given that the particular event was triggered. We believe, such semantics make it easier for the expert not only to be able to interpret the importance of events available in the system, but also in determining the relative importance of new events that may be added in the future. This is not the case if the events have unbounded weights, as is witnessed in some current tools.

Confidences of events are complimentary to their weights. While weights indicate the importance of an event in detecting fraud, confidences signify our belief in the occurrence of the event. For example, if we consider the vendor requestor monopoly event, it either occurs or doesn’t occur. If the event is triggered our confidence would be 1 else it would be 0. As we can see here, the confidence is different from the weight, which is a fixed number irrespective of if the event occurs or not. We use both of these indicators, that is, confidences and weights to determine the probability of fraud by an entity, which we will visit in detail in subsection 2.1.7.

Confidences for most events are either 1 or 0 depending on if they are triggered or not respectively. However, they are a real number between $[0, 1]$ for some events. A good example is the country corruption event. We calculate the confidence for this event as follows: $c_{CPI} = \frac{100 - CPI}{100}$. CPI lies between $[0, 100]$, where a higher CPI indicates lesser risk. However, in our design we want the confidences to lie in $[0, 1]$, where a higher value indicates a stronger signal for the event.

2.1.5 Social Network Analysis

We have described events on transactional data or RFx data that indicate the possibility of collusion. Analyzing social network data could significantly enhance our confidence in such findings. As mentioned before, there are companies which sell information about individuals regarding where all and with whom they lived in the last decade. In addition, information regarding their spouses and other close relatives is available. Accessing such information could be invaluable in determining collusion. Many times public profiles on social networking sites could also be accessed to reveal relations between individuals.

In algorithm 1, we observe how information from such data sources could be used to enhance our confidence in the fact that collusion has occurred. c_r can be obtained from transactional or RFx data. For example, if we consider the event Unfair Win being triggered, we could set $c_r = 0.5$ as we are not hundred percent sure that collusion has occurred. Now accessing social network data and using algorithm 1, we can further strengthen our confidence in the finding that the two entities are colluding. t_s is a threshold used in the algorithm to improve efficiency as paths longer than a certain length will lead to very small confidences and weights to determine the probability of fraud by an entity, which we will visit in detail in subsection 2.1.7.

For the algorithm 1, we observe how information from such data sources could be used to enhance our confidence in the fact that collusion has occurred. c_r can be obtained from social network data. For example, if we consider the event Suspicious Transaction being triggered, we could set $c_r = 0.5$ as we are not hundred percent sure that collusion has occurred. Now accessing social network data and using algorithm 1, we can further strengthen our confidence in the finding that the two entities are colluding. t_s is a threshold used in the algorithm to improve efficiency as paths longer than a certain length will lead to very small confidences and weights to determine the probability of fraud by an entity, which we will visit in detail in subsection 2.1.7.

Algorithm 1 Computing total confidence of collusion based on social networking given collusion confidence based on other (viz. transactional, RFx) data.

Input: Social network $G_S = (V, E)$, suspect entities (V_1, V_2), confidence of collusion based on other data c_r, social confidence threshold t_s and importance of social network information $\alpha \in [0, 1]$.

Output: c_{tot} \{Total confidence of collusion.\}

Set $W = \phi \{\text{Setting list of weights to empty initially.}\}$

for all $E_{ij} \in E$ do

if V_i, V_j are same person then

Set $p = 1 \{p$ signifies probability that V_i and V_j are colluding based on social network information.$\}$

else if V_i, V_j are close relatives then

Set $p = 0.95$

else if V_i, V_j are friends/acquaintences then

Set $p = 0.9$

end if

Set $w_{ij} = -\log(p) \{\text{Edge weight for } E_{ij}\}$

$W = W \cup (w_{ij}, E_{ij}) \{\text{Storing weights with the corresponding edge.}\}$

end for

Set $c_{social} = ETShortestPath(G_S, W, V_1, V_2, t_s) \{\text{Find the exponentiated shortest path between } V_1 \text{ and } V_2 \text{ thresholded by } t_s, \text{ i.e. if the shortest path length at any intermediate step in Dykstra’s algorithm starting at } V_1 \text{ is } > t_s \text{ return 0 else return } e^{-t_s}, \text{ where } t_s \text{ is the length of the shortest path.}\}$

Return $c_{tot} = \min(c_r + \alpha c_{social}, 1) \{\text{Total collusion confidence is the sum of } c_r \text{ and discounted social network based collusion.}\}$
would be determined by the frequency of the communication between the various entities and checking the content for high risk words or phrases.

2.1.6 Unsupervised Learning

From experience with dealing with domain experts across different industries, we believe that for them to gain faith in the system it is necessary to have high precision even if it is at the expense of some recall. In other words, many false positives can immediately inhibit interest amongst practitioners and experts for such a tool. Thus, the unsupervised component is of relatively low importance in the initial deployments of this application.

Nevertheless, methods from infrequent pattern mining [7] could be of considerable significance here, in identifying low support but high recall sequences in the data. These methods are of interest in anti-terrorism, where one monitoring suspicious money movements through different bank accounts.

If the patterns found by these methods are interesting they could lead to new rules that need to be checked in the future. This capability should not be ignored as humans are always adapting and hence, it is important to uncover suspicious behaviors not known to be risky by the experts.

2.1.7 Ranking Risky Entities

As we have discussed in previous subsections, each event \(i \) is associated with a weight \(w_i \in [0,1] \) and given an entity \(E \) we have a corresponding confidence \(c_i^E \in [0,1] \) of occurrence. Thus, the probability that an entity is fraudulent/risky is 1 minus the probability that it is not fraudulent. The probability that it isn’t fraudulent is the probability that none of events that are triggered for it are fraudulent. Formally, given a total number of \(n \) possible events \(I = \{1,...,n\} \) the probability that entity \(E \) is fraudulent is given by,

\[
P_f^E = 1 - \prod_{i \in I} (1 - w_i c_i^E)
\]

where for any event \(i \), \(w_i c_i^E \) is the probability that entity \(E \) is fraudulent given that the event was triggered with confidence \(c_i^E \). Notice that for events that are not triggered for entity \(E \), the corresponding confidences \(c_i^E \) would be 0, thus not contributing to the overall fraud probability.

We can now rank entities in descending order based on our score namely, the fraud probability \(P_f^E \). Entities higher up in the list would be potentially of more interest than those lower down. Information regarding entities of interest can then be passed to other investigative tools. Results of the investigation can be entered into our tool as feedback or can lead to updating of the events as shown in figure 2.

It is clear from the formulation in equation 1 that we can score entities with whatever universe of events we have at a particular stage of the system development. Hence, even without the social networking and unsupervised learning component we can still obtain a ranked list. This is depicted in figure 2 by the thin arrow connecting the weights assignment block to the ranked list block, thus circumventing the blocks described in the previous two subsections.

2.1.8 Online Probabilistic Learning

On presenting the user with a ranked list of possibly fraudulent candidates, the user can further investigate entities that interest him/her. For each entity he can enter 3 possible outcomes into the system. He can indicate that, i) the entity was fraudulent or ii) the entity was not fraudulent and uninteresting or iii) the entity was not fraudulent but wants to keep monitoring it. Depending on the feedback we want to update the current weights of the events triggered for that entity. A key aspect of the updating procedure is that we want to maintain interpretability of the individual weights. In other words, we want the weights to be in \([0,1]\) after an update. Moreover, we want our efficient online learning procedure to have quality guarantees.

Let \(y \) denote the feedback variable, which is 1 for case i), 0 for case ii) and 2 for case iii). For case iii) we maintain the current weights as is seen in algorithm 2, since we neither want to emphasize or de-emphasize the relevant events. Hence, we want \(P_f^E \) to be as close to 1 when the feedback is i) and to be close to 0 when the feedback is ii). With this we define the following least squares loss function that we want to optimize for our problem,

\[
L = (y - P_f^E)^2
\]

where if \(\forall i \in \{1,...,n\} \) \(p_i = 1 - w_i c_i^E \), then from equation 1 we have,

\[
P_f^E = 1 - \prod_{i \in I} p_i
\]

From equations 2 and 3 our loss function can be written as,
\[L = (y - 1 + \prod_{i \in I} p_i)^2 \]

(4)

If we set \(g_i = \ln(p_i) \) and \(b = \ln(2(1 - y)) \) we can rewrite the above equation as,

\[L = e^{2 \sum_{i \in I} g_i} + 1 \frac{e^{2b}}{4} - e^{b \left(\sum_{i \in I} g_i + 1 \right)} \]

(5)

The function in equation 5 is not convex. For convex loss functions however, it has been shown in [14] that online gradient descent with projections onto a convex set, which is \([0, 1]\) in our setting, achieves low regret. For this result to be applicable to us, we need to derive a convex approximation of our loss function. We accomplish this by linearizing the portion in equation 5 after the negative sign, which makes the following new function a convex upper bound of \(L \),

\[L_u = e^{2 \sum_{i \in I} g_i} + 1 \frac{e^{2b}}{4} - e^{b \left(\sum_{i \in I} g_i + 1 \right)} \geq L \]

(6)

Taking partial derivatives of \(L_u \) with respect to (w.r.t.) each of the non-zero \(g_i \)'s and setting each such derivative to zero, leads to the update procedure described in algorithm 2. The weights are then projected onto \([0, 1]\), where \(I(\cdot) \) is an indicator function, which is 1 when the parametrized condition is true and is 0 otherwise. Thus, our solution achieves low regret w.r.t. \(L_u \), which is a convex upper bound of \(L \).

\[\eta \] in algorithm 2 is the learning rate. We set a significantly higher learning rate for fraudulent cases than for non-fraudulent ones, since in the real world most cases are likely to be non-fraudulent. Given this, we do not want our weights to converge to 0 quickly when feedback on non-fraudulent cases is provided. At the same time we want to quickly emphasize events that lead to entities being fraudulent as they are likely to be far and few but critical. Of course, one can change these settings of \(\eta \) depending on the maturity of a particular company in terms of compliance tools and processes that are in place.

2.2 Architecture

Given that we have a system that runs daily processing and analyzing billions of dollars of spend spread over millions of invoices and tens of thousands of vendors across the world, we need an architecture that is robust and scalable.

The solution architecture primarily comprises of three major components:

- Central data processing system and data warehouse
- Big data processing system
- Risk analytics engine

Firstly, the central data processing system, is implemented using IBM InfoSphere Information Server, which controls and regulates the flow of data in the system. Moreover, it orchestrates the triggering/execution of the different anomalous events and other analytical components. It also uses a number of data adaptors for the various public and private data sources that we have mentioned before, along with an extensible mechanism to add new adapters. One of the major challenges is to integrate the different data sources in a seamless manner so as to perform advanced analytics and report high risk entities. The central data warehouse bares this burden and is implemented using IBM DB2, which uses extensible high dimensional data modeling methods to support scalable data storage and retrieval.

Secondly, the big data processing system, implemented using IBM InfoSphere BigInsights and IBM InfoSphere Streams,
complements the central data processing system for analyzing massive amounts of data. IBM InfoSphere BigInsights is based on an open source Apache Hadoop platform, which includes social media accelerators and text analysis toolkits that can be leveraged to process large structured/unstructured data sources such as social media, email, etc., using low cost commodity hardware. IBM InfoSphere Streams can be used to capture and process data in near real-time.

Finally, the risk analytics engine contains a library of anomalous events and analytic modules based on IBM SPSS, Python and Java that work in a co-ordinated fashion to score and rank risky entities.

3. OPERATIONAL FEEDBACK

Our first client for this system is IBM itself. The reasons for this are at least three-fold: First, if IBM itself is not using the system why would an external client be interested. Second, using IBM as a test bed we can enhance the system by removing kinks and testing it on large amounts of data consisting of billions of dollars of spend with hundreds of thousands of employees and tens of thousands of vendors. Third, a successful deployment within IBM will result in the relevant organizations providing support for the system in front of external clients. Saying this we have already demoed the system to potential external clients with positive feedback.

Our current deployment has been for IBM corporate comprising of experts from Accounts Payable (AP), and Policies and Practices (P&PE). The former tries to identify fraudulent entities, while the latter tries to identify entities posing a significant compliance risk. Based on their experience using the tool over the past 12 months, we have received the following feedback:

- They have significantly better coverage now. Previously, they could analyze only vendors in 3-4 countries in a month. However, now they can look at vendors across 150 countries daily.
- The tool has increased their efficiency by approximately 80%. What this means in data mining terms is that our top 20 list, which they review every week, has on average 80% more true positives than the state-of-the-art methods they had been previously using.
- They have found true positives that weren’t in the last 15+ years because of our text analysis coupled with our scoring scheme.
- They have been able to take preemptive action and block invoices of 10s of vendors because of our fuzzy matching with the previously mentioned suspect lists.

Overall, the main reasons for the improved efficacy are our scoring model, the specific implementations of some of the anomalous events (viz. fuzzy matching, statistical outlier detection, text analysis) and the scalable user friendly architecture of our system.

Given the closely related but different focus of these two organizations, we provide one example belonging to each of these types of cases that our tool found and were considered high risk by the experts.

Before we describe these cases, we elucidate the data analyzed. These results are based on analysis of a rolling window of one year of real IBM procurement data, which consists of millions of invoices and has over 65000 vendors. In addition to this, we also access the various public and private data sources mentioned before. We have around 200+ DataStage jobs running daily to extract, transform and load data that feeds the analytics engine. For aesthetic reasons we show the risk/fraud score multiplied by 100 and then rounded in the screen shots. In figure 4, we have a world view of the risk score computed by our method and then averaged over vendors belonging to a particular country. We see that the average risk score is higher for parts of
Figure 5: Above we see the overall risk score (x100) for a potentially fraudulent vendor and the events that were triggered for it.

<table>
<thead>
<tr>
<th>Summary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
</tr>
<tr>
<td>Vendor_469</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Category</td>
</tr>
<tr>
<td>Collusion</td>
</tr>
<tr>
<td>Transaction</td>
</tr>
</tbody>
</table>

Figure 6: Above we see the overall risk score (x100) for a potentially non-compliant vendor and the events that were triggered for it.

<table>
<thead>
<tr>
<th>Summary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
</tr>
<tr>
<td>Vendor_7649</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Category</td>
</tr>
<tr>
<td>Transaction</td>
</tr>
</tbody>
</table>

South America, Africa, Asia, Mexico and Eastern Europe. This aggregated view can provide a guideline of regions of the world to focus on.

In figures 5 and 6, we see a more detailed view of two vendors that potentially present high risk and were identified by our tool. In the summary tab in both these figures, we see the (anonymized) vendor name followed by more vendor specific information in the next four columns. The No. of Events column, denotes the number of events triggered for this vendor. The last column is the risk score (x100) computed by our method. The preceding four columns are risk scores based on a partition of the universal list of events. Essentially, they act as thumbnails providing a quick sneak peek into where the problem lies for the particular entity. So for example in figure 5, most of the risk for that vendor is associated with its invoice/transactional data. In addition, there is also a collusion risk. Analogously, for the vendor in figure 6 all his risk can be attributed to non-compliant and potentially fraudulent transactions. More details about the particular events that were triggered leading up to these risk scores can be found in the Events tab below. The tool also allows the user to perform multiple other tasks such as see the transactional and other accessed data, filter invoices by triggered events, however due to limited space we do not show screen shots for those.

Further delving into the case in figure 5, we see that there is a risk of collusion as a single requestor/employee is approving a bulk of the invoices sent by the vendor. Coupled with this we see that there is more than a 50% jump in spending with this vendor from a six month to the next six month period. Moreover, five other events are triggered making this vendor high on the suspect list.

The case in figure 6, showcases the usefulness of mining unstructured data. The three highest risk events are triggered due to text analysis. Other than these we have the event that checks for risky commodity codes being triggered, which indicates a potential for bypass. These along with triggering of three other lower risk events makes this vendor worth investigating.

4. DISCUSSION

In this paper, we described a daily running system that is currently being used by various organizations within IBM. The plan is to continuously extend and improve the system.
and deploy it with other internal and external clients. The idea is to have a universal list of events with default initial weights that are customizable by the experts in the particular organization. Therefore, every new organization/client will have their own independent instantiation of our system. An effective system such as this will potentially not only identify fraud but will also serve as a deterrent for entities that are currently committing fraud or those that are considering of doing it in the future.

Deploying such a system has many challenges. One of the main challenges is being able to access sensitive private data. For example, some of our events require accessing employee bank account data, which is highly sensitive information. We tackle this problem by letting HR run the specific events in their firewall and returning only the result. After all, our system only needs to know if a particular event was triggered for an entity or not. For instance consider the event, where we check to see if a vendor bank account number matches an employee bank account number. This would require knowing the bank account numbers of both these entities. However, we could send HR a list of vendor bank accounts and they could match them against the employee database and return to us the list of vendors that matched. This completely absolves them from sending us the employee bank account numbers. An analogous strategy can be used for other events that require sensitive data, where only the list of entities for whom the event was triggered is returned to us by the responsible party.

Another challenge is the type of data that the client is ready to subscribe to. The client may not want to buy or pay for accessing certain paid data sources that may carry useful signals. In certain cases, a particular geography may have restrictions on the public data that may be used incriminate anyone. For example, in Europe using publicly available social data to accuse an individual is strongly discouraged. Given these restrictions in regards to accessing different data sources, which could lead us to potentially miss important signals, we can either settle with what we have or try to be more creative. From an analytics perspective a possible way of mitigating the impact of the absence of these data sources is to implement an extrapolated scoring scheme. What we mean by this is that using available data from existing clients (viz. IBM) we can figure out through techniques such as association rule mining the likelihood of certain combination of events to co-occur. Based on these insights we can score entities of a new client with their limited data by seeing the events that have been triggered for each entity and appending those with events that are likely to be triggered if in fact they had the data. In essence, we are extrapolating the score based on our knowledge of other similar clients. This extension could of course be erroneous but its probably our best estimate given the missing data sources.

Another extension to the system would be to come up with joint weights/probabilities for certain groups of events. Of course we cannot consider all possible groups as this list is exponential in the number of events. However, certain groups of events being simultaneously triggered may have more information than multiplying their importances as if they were independent. An alternate way of dealing with this if the groups are disjoint, is to combine the events in each group into a single corresponding composite event with an associated weight, in which case, the machinery described in this paper can be directly applied. Many such improvements are being implemented and tested in the system as we speak. Moreover, we are involved in serious discussions about carrying over the design and adapting the various analytical components to detecting fraud in other related domains.

Acknowledgement

We would like to thank Anthony Mazzati from Accounts Payable, Pablo Varela and Kathy Moon from Policies and Practices, Brian Hopper from Global Process Services and many others from different organizations (FCPA, Auditing) within IBM who continue to help us in improving this tool and are instrumental in its success.

5. REFERENCES