Efficient Optimization of Diameter and Average Shortest Path Length of a Graph using Path Count Index

Hiroshi Inoue
IBM Research – Tokyo
My results in GraphGolf

2015

<table>
<thead>
<tr>
<th>Rank</th>
<th>Author</th>
<th>Number of best solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>🏆</td>
<td>Nobushimi & Ryo Ashida & Ryuhei Mori</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>H. Inoue</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>yawara & amami</td>
<td>3</td>
</tr>
</tbody>
</table>

2016

<table>
<thead>
<tr>
<th>Rank</th>
<th>Author</th>
<th>Number of best solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>🏆</td>
<td>Takayuki Matsuzaki & Teruaki Kitasuka & Masahiro Iida</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>H. Inoue</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Ryuhei Mori</td>
<td>5</td>
</tr>
</tbody>
</table>
Overview

• Problem to solve
 – Optimization problem of finding a graph with smaller diameter and ASPL (average shortest path length) for given order (number of nodes) \(n \) and degree \(d \)

• My Approach
 – Local search with light-weight estimation of objective functions; naively calculation of objective functions is too costly for large graphs
Optimization process overview

start from a random graph

apply random modification

revert

calculate objective functions

improved? yes no
Optimization process overview

1. Start from a random graph
2. Apply random modification
3. Calculate objective functions
4. Evaluate if improved?
 - Yes: Stop
 - No: Revert and try again

Example method: 2-opt method

Diagram illustrating the process with nodes A, B, C, D and arrows connecting them to show the progression of the optimization.
Optimization process overview

Start from a random graph

Apply random modification

Calculate objective functions

Improved?

No

Revert

Yes

1. Calculate shortest path for all node pairs (e.g., using Floyd–Warshall algorithm)

2. Obtain degree and ASPL from 1.
Problem with large graphs

start from a random graph

apply random modification

calculate objective functions

improved?

no

revert

yes

1. calculate shortest path for all node pairs (e.g. using Floyd–Warshall algorithm)
 \(O(n^3) \) \(\Rightarrow \) too costly for large graphs
2. obtain degree and ASPL from 1.

\(n \): number of nodes
Our approach

1. Start from a random graph
2. Apply random modification
3. Estimation-based optimization loop
4. Fully calculate objective functions
5. Improved?
 - Yes: Continue
 - No: Revert and apply random modification again
Our approach

start from a random graph

apply random modification

estimation-based optimization loop

fully calculate objective functions

improved?

no

revert

yes

do full check occasionally e.g. once per 1,000 updates

apply random modification

calculate light-weight estimation of objective functions

improved?

no

updated t times?

yes

no

revert
How to estimate?

• what we actually need is:
 – not the current value of the objective functions (i.e. the diameter and ASPL)
 ☹ need to process the entire graph
 ➔ prohibitively costly for large graphs
 – but only the changes in the objective functions due to a small modification made in the graph
 ☉ can be calculated from the local information around the modified edges
Index to calculate changes

- To calculate the changes in all pairs shortest path when adding or removing an edge, we introduce a new index structure called **Path Count Index**

- Path Count Index is a lookup table that holds \{node1, node2, path length\} ➔ number of paths
 - $1 \leq \text{path length} \leq L_{\text{max}}$
 - if $L_{\text{max}} = 1$, Path Count Index is the adjacency matrix
 - excluding paths includes a cycle
Example of path count index

- \{ A, B, 1 \} = 1 (A-B)
- \{ A, B, 2 \} = 0
- \{ A, B, 3 \} = 1 (A-C-D-B)
 - A-B-D-B and A-C-A-B are not counted

- \{ A, D, 1 \} = 0
- \{ A, D, 2 \} = 2 (A-B-D, A-C-D)
- \{ A, D, 3 \} = 1 (A-C-E-D)
Example of path count index

- \{ A, B, 1 \} = 1 \text{ (A-B)}
- \{ A, B, 2 \} = 0
- \{ A, B, 3 \} = 1 \text{ (A-C-D-B)}
 - A-B-D-B and A-C-A-B are not counted
- \{ A, D, 1 \} = 0
- \{ A, D, 2 \} = 2 \text{ (A-B-D, A-C-D)}
- \{ A, D, 3 \} = 1 \text{ (A-C-E-D)}
Removing an edge (B→D)

- \{ B, D, 1 \} = 1 \rightarrow 0
- \{ A, D, 2 \} = 2 \rightarrow 1
- \{ B, C, 2 \} = 2 \rightarrow 1
- \{ B, E, 2 \} = 1 \rightarrow 0
- \{ A, C, 3 \} = 1 \rightarrow 0
- \{ B, E, 3 \} = 2 \rightarrow 1
- …

We calculate the changes in shortest path lengths while maintaining the path count index.
Removing an edge (B → D)

node B and E
- \{ B, E, 1 \} = 0
- \{ B, E, 2 \} = 1 → 0
- \{ B, E, 3 \} = 2 → 1

shortest path length is increased by 1 (2 → 3)

node A and D
- \{ A, D, 1 \} = 0
- \{ A, D, 2 \} = 2 → 1
- \{ A, D, 3 \} = 1

shortest path length is not increased
Adding an edge (B → E)

- \{ B, E, 1 \} = 0 \rightarrow 1
- \{ A, E, 2 \} = 1 \rightarrow 2
- \{ D, E, 2 \} = 1 \rightarrow 2
- \{ B, C, 2 \} = 2 \rightarrow 3
- \{ B, D, 2 \} = 0 \rightarrow 1
- \{ B, F, 2 \} = 0 \rightarrow 1
- \{ A, F, 3 \} = 1 \rightarrow 2

...
Adding an edge (B→E)

node B and F
- \{ B, F, 1 \} = 0
- \{ B, F, 2 \} = 0 → 1
- \{ B, F, 3 \} = 1

node A and F
- \{ A, F, 1 \} = 0
- \{ A, F, 2 \} = 0
- \{ A, F, 3 \} = 1 → 2

shortest path length is decreased by 1 (3→2)
shortest path length is not decreased
2-opt and path count index

- One 2-opt step removes two edges and then adding two edges
 - we can calculate changes in shortest path lengths (and hence ASPL and degree) as total of changes by four operations
- We can complete these operations only using local information without touching the entire graph
 - efficient even for large graphs
Why it gives only estimation?

- Because we have limitation in path length counted in path count index

node B and F (with $L_{max} = 3$)

- $\{ B, F, 1 \} = 0$
- $\{ B, F, 2 \} = 0$
- $\{ B, F, 3 \} = 1 \rightarrow 0$

no non-zero entry for B-F \rightarrow we assume $L_{max} + 1$ is the shortest path length (this may incorrect!)
How to decide L_{max}?

- L_{max} is a parameter to control tradeoff between accuracy and performance
 - larger L_{max} increases accuracy
 - smaller L_{max} reduces overhead in memory size and computation cost
- L_{max} equal to or slightly less than the diameter of the graph is a good choice for many cases

<table>
<thead>
<tr>
<th>(n, d)</th>
<th>current diameter</th>
<th>lower bound diameter</th>
<th>L_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100k, 20</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>100k, 11</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>100k, 7</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10k, 3</td>
<td>15</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>
Our approach

- Start from a random graph
- Apply random modification
- Estimation-based optimization loop
 - Fully calculate objective functions
 - Improved?
 - No
 - Revert
 - Yes
 - Calculate light-weight estimation of objective functions
 - Improved?
 - No
 - Revert
 - Yes
 - Updated t times?
 - No
 - Revert
 - Yes
 - Do full check occasionally e.g. once per 1,000 updates
metaheuristics

- based on (not-sophisticated) simulated annealing
 - if a better solution is not found after T trials (T: a pre-defined threshold), we accept a new solution that (slightly) worsen the objective functions
Optimization in edge selection for 2-opt

• In graph, each edge has different relative importance on ASPL and degree (e.g. edge betweenness centrality)
• Randomly selecting two edges to remove in a 2-opt trial may remove an important edge
 → such 2-opt trial will not be successfully
Sort-based edge selection for 2-opt

1. select M edges randomly
2. for each edge, calculate the change (increase) in the objective function when removing the edge using path count index
3. sort M edges by the changes
4. try 2-opt only for pairs selected from m ($m < M$) edges having relatively low importance
 - e.g. $m = M / 4 \Rightarrow$ the number of pairs becomes only $1/16$ ($1/4^2$)
Implementation

- Implemented in C++
 - this library is not originally designed for all pairs distances computation
- (mostly) not parallelized!
 - only rarely-executed full computation of node-to-node distances is parallelized using OpenMP

[1] Takuya Akiba et al., Fast exact shortest-path distance queries on large networks by pruned landmark labeling, SIGMOD '13
Performance

• For large graphs (e.g. 100k-node configurations of GraphGolf 2016), the performance improvements are quite large since my algorithm reduces the computational complexity
 – naively computing all node-to-node distances of one graph \(n=100k, \ d=20 \) takes more than 2 hours with 8 threads
 – one 2-opt trial with path count index takes about 0.1 sec (since we do not need to access the entire graph)
 \(\Rightarrow \) speed up in order of \(10^5 \)
Performance

- From submission history of GraphGolf 2015 \((n=10k, \ d=64)\)
Memory consumption for path count index

- The number of paths of length L between two nodes is up to
 \[
 \begin{cases}
 1 & \text{for } L=1 \\
 d \times (d - 1)^{L-2} & \text{for } L>1
 \end{cases}
 \]
- For example, the entry of path count index for one node pair with $d = 3$ and $L_{\text{max}} = 3$ can fit in one byte
 - $L=1$ (up to 1 path): 1 bit
 - $L=2$ (up to 3 paths): 2 bits
 - $L=3$ (up to 6 paths): 3 bits
- the total size of the path count index is
 \[
 \frac{n \times n}{2} \times \text{entry_size}
 \]
Memory size optimization

- Problem:
 entry size may become too big for large d and L_{max}
- e.g. for $d = 64$
 - $L=1$ (up to 1 path): 1 bit
 - $L=2$ (up to 64 paths): 6 bits
 - $L=3$ (up to 4032 paths): 12 bits
 - $L=4$ (up to 254k paths): 18 bits
Memory size optimization

• Problem:
entry size may become too big for large d and L_{max}

• e.g. for $d = 64$
 - $L=1$ (up to 1 path): 1 bit
 - $L=2$ (up to 64 paths): 6 bits \rightarrow 4 bits
 - $L=3$ (up to 4032 paths): 12 bits \rightarrow 4 bits
 - $L=4$ (up to 254k paths): 18 bits \rightarrow 4 bits

\Rightarrow having the multiple paths of the same length is redundant and should not happen to achieve smaller ASPL

\Rightarrow in random graphs, large path counts in the path count index were rarely observed
Total size of path count index for graph golf

<table>
<thead>
<tr>
<th>(n, d)</th>
<th>L_{max}</th>
<th>entry size</th>
<th>total size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100k, 20</td>
<td>4</td>
<td>16 bit</td>
<td>10 GB</td>
</tr>
<tr>
<td>100k, 11</td>
<td>4</td>
<td>16 bit</td>
<td>10 GB</td>
</tr>
<tr>
<td>100k, 7</td>
<td>7</td>
<td>32 bit</td>
<td>20 GB</td>
</tr>
<tr>
<td>10k, 64</td>
<td>2</td>
<td>8 bit</td>
<td>50 MB</td>
</tr>
<tr>
<td>10k, 3</td>
<td>14</td>
<td>64 bit</td>
<td>400 MB</td>
</tr>
</tbody>
</table>

- Note that, in the current implementation, we use 2x larger memory compared to the above size; we store the same data for (i, j) and (j, i) to avoid conditional branch overheads.
Reducing diameter

- In three categories, we won by a smaller diameter (not by a smaller ASPL)
 - $n=1800/d=7$ (2016), $n=100k/d=11$ (2016), $n=4096/d=3$ (2015)

To reduce the diameter, we employ another objective function in the optimization.
Objective function for reducing diameter

• We focus on “number of node pairs whose distance is equal to the diameter” (ρ)
 – ρ becomes 0 \Rightarrow diameter is reduced by 1

• We can use ρ as the objective function of the optimization instead of ASPL
 – base objective function: $100000k + l$
 (\(k: \text{diameter}, l: \text{ASPL}\))
 – objective function for diameter: $100000k + \rho$

• We can efficiently calculate ρ from the path count index if $L_{max} \geq k$
Entire optimization process

• Optimizing p typically worsen ASPL while optimizing ASPL (gradually) reduces p

• The entire optimization process using two objective functions are as follow:
 1. We start optimization for ASPL
 2. If p becomes relatively small (depends on graph size but typically less than 100~1,000), we manually switch the objective function for diameter based on p
 3. We go back to the normal objective function after getting a smaller diameter (i.e. p becomes 0)
Diameter and ASPL

In some categories, I submitted two final solutions: one with **best diameter** and one with **best ASPL**

100000 nodes, degree 11

<table>
<thead>
<tr>
<th>Rank</th>
<th>Author</th>
<th>Diam. k</th>
<th>ASPL l</th>
<th>Diam. gap</th>
<th>ASPL gap</th>
<th>Improve</th>
<th>Info</th>
<th>Date (UTC)</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>★</td>
<td>H. Inoue</td>
<td>6</td>
<td>5.14685</td>
<td>1</td>
<td>0.28260</td>
<td>0.00392</td>
<td></td>
<td>2016-06-26 17:11:18</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>H. Inoue</td>
<td>7</td>
<td>5.14360</td>
<td>2</td>
<td>0.27934</td>
<td>0.00459</td>
<td></td>
<td>2016-06-26 17:11:18</td>
<td>25</td>
</tr>
</tbody>
</table>
Summary

• We introduced Path Count Index, which maintains the number of paths for all node pairs and path lengths
• We use Path Count Index for:
 – light-weight estimation of changes in shortest path length
 – efficient selection of target edges for 2-opt method
 – counting the number of node pairs having the distance equal to the diameter
• Since Path Count Index is a simple and flexible data structure, it will be potentially valuable for other operations with a dynamic graph
Backup
minor optimizations

• Try both of two ways of adding new edges in one 2-opt step
 – we need to pay the cost of edge removal only once for two trials