Lecture Topic: Iterative Methods
Key Concepts

For many problems, such as computing the square root, one cannot provide the perfect answer in finite amount of time.

One often applies *iterative methods* and analyses what happens in each iteration, within first k iterations, and in the large limit of the number of iterations (asymptotically).

Iterative methods typically employ a variety of approximations, starting with approximating real numbers by floating-point numbers, and do not stop, unless we specify some stopping rules (*termination criteria*).
For many problems, such as computing the square root, one cannot provide the perfect answer in finite amount of time.

One often applies *iterative methods* and analyses what happens in each iteration, within first k iterations, and in the large limit of the number of iterations (asymptotically).

Iterative methods typically employ a variety of approximations, starting with approximating real numbers by floating-point numbers, and do not stop, unless we specify some stopping rules (*termination criteria*).
Key Concepts

For many problems, such as computing the square root, one cannot provide the perfect answer in finite amount of time.

One often applies *iterative methods* and analyses what happens in each iteration, within first k iterations, and in the large limit of the number of iterations (asymptotically).

Iterative methods typically employ a variety of approximations, starting with approximating real numbers by floating-point numbers, and do not stop, unless we specify some stopping rules (*termination criteria*).
Key Concepts

For many problems, such as computing the square root, one cannot provide the perfect answer in finite amount of time.

One often applies iterative methods and analyses what happens in each iteration, within first k iterations, and in the large limit of the number of iterations (asymptotically).

Iterative methods typically employ a variety of approximations, starting with approximating real numbers by floating-point numbers, and do not stop, unless we specify some stopping rules (termination criteria).
Key Concepts

Most iterative method can be cast as:

```python
def method(initial = 0.0, stop = lambda x0, xk, k: False):
    x = initial
    k = 1
    while not stop(initial, x, k):
        x = T(x)
        k += 1
    return x
```

Let us use x_k to denote the x obtained in iteration k. T is called the step. $stop$ implements the termination criteria, e.g., that we no longer gain any precision, or that $|x_k - x_{k+1}|$ is below a threshold, or just that k exceeded some threshold.
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence is asymptotically *convergent* (whether there exists \(x\) such that \(x_k \to x\) as \(k \to \infty\), i.e., there exists \(\lim_{k \to \infty} x_k\)),

what does it converge to (whether the limit is what we expect),

what is *the rate of convergence* (how much precision one gains in an iteration),

and how *stable* is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (*condition*).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence

is asymptotically *convergent* (whether there exists \(x\) such that \(x_k \to x\) as \(k \to \infty\), i.e., there exists \(\lim_{k \to \infty} x_k\)),

what does it converge to (whether the limit is what we expect),

what is *the rate of convergence* (how much precision one gains in an iteration),

and how *stable* is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (*condition*).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence

is asymptotically convergent (whether there exists \(x\) such that \(x_k \to x\) as \(k \to \infty\), i.e., there exists \(\lim_{k \to \infty} x_k\)),

what does it converge to (whether the limit is what we expect),

what is the rate of convergence (how much precision one gains in an iteration),

and how stable is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (condition).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence

is asymptotically *convergent* (whether there exists \(x\) such that \(x_k \to x\) as \(k \to \infty\), i.e., there exists \(\lim_{k \to \infty} x_k\)),

what does it converge to (whether the limit is what we expect),

what is *the rate of convergence* (how much precision one gains in an iteration),

and how *stable* is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (*condition*).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence is asymptotically **convergent** (whether there exists \(x\) such that \(x_k \to x\) as \(k \to \infty\), i.e., there exists \(\lim_{k \to \infty} x_k\)),

what does it converge to (whether the limit is what we expect),

what is **the rate of convergence** (how much precision one gains in an iteration),

and how **stable** is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (**condition**).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence

is asymptotically *convergent* \((\text{whether there exists } x \text{ such that } x_k \to x \text{ as } k \to \infty, \text{ i.e., there exists } \lim_{k \to \infty} x_k)\),

what does it converge to \((\text{whether the limit is what we expect})\),

what is *the rate of convergence* \((\text{how much precision one gains in an iteration})\),

and how *stable* is it \((\text{how fast do errors propagate, or how much precision you lose per iteration})\).

Much of the above should be expressed as functions of parameters of the instance of your problem \((\text{condition})\).
Key Concepts

It is easy to see that the prototypical iterative method generates, in mathematical terms, a sequence \((x_k)\).

One should ask whether the sequence is asymptotically *convergent* (whether there exists \(x\) such that \(x_k \rightarrow x\) as \(k \rightarrow \infty\), i.e., there exists \(\lim_{k \rightarrow \infty} x_k\)), what does it converge to (whether the limit is what we expect), what is the *rate of convergence* (how much precision one gains in an iteration), and how *stable* is it (how fast do errors propagate, or how much precision you lose per iteration).

Much of the above should be expressed as functions of parameters of the instance of your problem (*condition*).
Convergence in Calculus

We may view this algorithm as generating a sequence \((x_0, x_1, \ldots, x_n, \ldots)\) in some metric space \((X, d)\).

Usually \((X, d)\) is a normed vector space \((X, \| \|)\), with the metric given by \(d(x, y) := \| x - y \|\) for all \(x, y \in X\).

Given \(x_0\), the sequence is generated as follows:

\[
x_1 = T(x_0), \quad x_2 = T(x_1), \quad \ldots, \quad x_n = T(x_{n-1}).
\]

If this sequence converges to some limit \(x \in X\) then we say that this limit is approached by the process of successive approximation.

We sometimes write this sequence as

\[
(x_n = T(x_{n-1})) \quad \text{or} \quad (x_n = T^n(x_0)).
\]

Here, \(T^n(x_0) = T(T(\cdots (T(x_0) \cdots))\) means \(T\) applied \(n\) times in succession.
Convergence in Calculus

We may view this algorithm as generating a sequence \((x_0, x_1, \ldots, x_n, \ldots)\) in some metric space \((X, d)\).

Usually \((X, d)\) is a normed vector space \((X, \|\|)\), with the metric given by \(d(x, y) := \|x - y\|\) for all \(x, y \in X\).

Given \(x_0\), the sequence is generated as follows:

\[
x_1 = T(x_0), \ x_2 = T(x_1), \ldots, \ x_n = T(x_{n-1}).
\]

If this sequence converges to some limit \(x \in X\) then we say that this limit is approached by the process of successive approximation.

We sometimes write this sequence as

\[
(x_n = T(x_{n-1})) \text{ or } (x_n = T^n(x_0)).
\]

Here, \(T^n(x_0) = T(T(\cdots(T(x_0)\cdots)))\) means \(T\) applied \(n\) times in succession.
Convergence in Calculus

We may view this algorithm as generating a sequence \((x_0, x_1, \ldots, x_n, \ldots)\) in some metric space \((X, d)\).

Usually \((X, d)\) is a normed vector space \((X, \|\|)\), with the metric given by
\[
d(x, y) := \|x - y\| \quad \text{for all } x, y \in X.
\]

Given \(x_0\), the sequence is generated as follows:
\[
x_1 = T(x_0), \ x_2 = T(x_1), \ldots, \ x_n = T(x_{n-1}).
\]

If this sequence converges to some limit \(x \in X\) then we say that this limit is approached by the process of successive approximation.

We sometimes write this sequence as
\[
(x_n = T(x_{n-1})) \quad \text{or} \quad (x_n = T^n(x_0)).
\]

Here, \(T^n(x_0) = T(T(\cdots(T(x_0)\cdots)))\) means \(T\) applied \(n\) times in succession.
Convergence in Calculus

We may view this algorithm as generating a sequence \((x_0, x_1, \ldots, x_n, \ldots)\) in some metric space \((X, d)\).

Usually \((X, d)\) is a normed vector space \((X, \| \|)\), with the metric given by
\[
d(x, y) := \| x - y \|
\]
for all \(x, y \in X\).

Given \(x_0\), the sequence is generated as follows:
\[
x_1 = T(x_0), \quad x_2 = T(x_1), \quad \ldots, \quad x_n = T(x_{n-1}).
\]

If this sequence converges to some limit \(x \in X\) then we say that this limit is approached by the process of successive approximation.

We sometimes write this sequence as
\[
(x_n = T(x_{n-1})) \quad \text{or} \quad (x_n = T^n(x_0)).
\]

Here, \(T^n(x_0) = T(T(\cdots(x_0)\cdots))\) means \(T\) applied \(n\) times in succession.
Convergence in Calculus

We may view this algorithm as generating a sequence \((x_0, x_1, \ldots, x_n, \ldots)\) in some metric space \((X, d)\).

Usually \((X, d)\) is a normed vector space \((X, \|\|\|)\), with the metric given by
\[
d(x, y) := \|x - y\| \quad \text{for all } x, y \in X.
\]

Given \(x_0\), the sequence is generated as follows:

\[
x_1 = T(x_0), \quad x_2 = T(x_1), \quad \ldots, \quad x_n = T(x_{n-1}).
\]

If this sequence converges to some limit \(x \in X\) then we say that this limit is approached by the process of successive approximation.

We sometimes write this sequence as

\[
(x_n = T(x_{n-1})) \quad \text{or} \quad (x_n = T^n(x_0)).
\]

Here, \(T^n(x_0) = T(T(\cdots(T(x_0)\cdots)))\) means \(T\) applied \(n\) times in succession.
Examples

Example

For simplicity, we have taken \((X, d) = (\mathbb{R}, | |)\), that is, the metric is given by
\[d(x, y) := |x - y|\]
for all \(x, y \in \mathbb{R}\), where \(| |\) denotes the usual absolute value or modulus (a 1-dimensional norm).

First, \(T(x) = \sqrt{x}\), with \(x_0 = 2\), gives the sequence
\[(2.0, 1.4142, 1.1892, 1.0905, \ldots)\]
which has limit 1.0.

Note that at the limit \(x = 1\), we have \(x = T(x)\).

Second, \(T(x) = x + x(1 - ax)\), with \(a = 3.0\) and \(x_0 = 0.5\), gives the sequence
\[(.500000, .250000, .312500, .3320313, .333328, .333333, \ldots)\]
limit 1/3.

Note again that at the limit \(x = 1/3\), we have \(x = T(x)\).
Examples

Example

For simplicity, we have taken $(X, d) = (\mathbb{R}, || | |)$, that is, the metric is given by $d(x, y) := |x - y|$ for all $x, y \in \mathbb{R}$, where $| |$ denotes the usual absolute value or modulus (a 1-dimensional norm).

First, $T(x) = \sqrt{x}$, with $x_0 = 2$, gives the sequence

$$(2.0, 1.4142, 1.1892, 1.0905, \ldots)$$

which has limit 1.0.

Note that at the limit $x = 1$, we have $x = T(x)$.

Second, $T(x) = x + x(1 - ax)$, with $a = 3.0$ and $x_0 = 0.5$, gives the sequence

$$(.500000, .250000, .312500, .3320313, .333328, .333333, \ldots)$$

limit 1/3.

Note again that at the limit $x = 1/3$, we have $x = T(x)$.

♦
Examples

Example

For simplicity, we have taken \((X, d) = (\mathbb{R}, | |)\), that is, the metric is given by \(d(x, y) := |x - y|\) for all \(x, y \in \mathbb{R}\), where \(| |\) denotes the usual absolute value or modulus (a 1-dimensional norm).

First, \(T(x) = \sqrt{x}\), with \(x_0 = 2\), gives the sequence

\[
(2.0, 1.4142, 1.1892, 1.0905, \ldots)
\]

which has limit 1.0.

Note that at the limit \(x = 1\), we have \(x = T(x)\).

Second, \(T(x) = x + x(1 - ax)\), with \(a = 3.0\) and \(x_0 = 0.5\), gives the sequence

\[
(0.500000, 0.250000, 0.312500, 0.3320313, 0.333328, 0.333333, \ldots)
\]

limit 1/3.

Note again that at the limit \(x = 1/3\), we have \(x = T(x)\).
Examples

Example

For simplicity, we have taken \((X, d) = (\mathbb{R}, | |)\), that is, the metric is given by
\[d(x, y) := |x - y| \]
for all \(x, y \in \mathbb{R}\), where \(||\) denotes the usual **absolute value** or **modulus** (a 1-dimensional norm).

First, \(T(x) = \sqrt{x}\), with \(x_0 = 2\), gives the sequence

\[(2.0, 1.4142, 1.1892, 1.0905, \ldots)\]
which has limit 1.0.

Note that at the limit \(x = 1\), we have \(x = T(x)\).

Second, \(T(x) = x + x(1 - ax)\), with \(a = 3.0\) and \(x_0 = 0.5\), gives the sequence

\[(.500000, .250000, .312500, .3320313, .333328, .333333, \ldots)\]
limit 1/3.

Note again that at the limit \(x = 1/3\), we have \(x = T(x)\).
Examples

Indeed, for any a the mapping T has a fixed point $x = 1/a$ such that $x = T(x)$.

Next, consider $T(x) = 1 + x$, with $x_0 = 0$ gives the sequence

$$(0, 1, 2, 3, 4, \ldots)$$

which has limit ∞.

This sequence diverges for all x_0.

From this, it is clear that the convergence of a sequence generated by successive approximation depends on the transformation T.
Examples

Indeed, for any a the mapping T has a fixed point $x = 1/a$ such that $x = T(x)$. Next, consider $T(x) = 1 + x$, with $x_0 = 0$ gives the sequence

$$(0, 1, 2, 3, 4, \ldots)$$

which has limit ∞.

This sequence diverges for all x_0.

From this, it is clear that the convergence of a sequence generated by successive approximation depends on the transformation T.
Examples

Indeed, for any \(a \) the mapping \(T \) has a fixed point \(x = 1/a \) such that \(x = T(x) \).

Next, consider \(T(x) = 1 + x \), with \(x_0 = 0 \) gives the sequence

\[
(0, 1, 2, 3, 4, \ldots)
\]

which has limit \(\infty \).

This sequence diverges for all \(x_0 \).

From this, it is clear that the convergence of a sequence generated by successive approximation depends on the transformation \(T \).
Calculus in Convergence

One example of sequence, which are guaranteed to converge, are contraction mappings: the distance between a pair of transformed points $T(x_1), T(x_2)$ needs to be less than the distance between the points x_1, x_2 themselves.

There, Banach’s fixed point theorem guarantees the convergence T in a complete metric space: the sequence converges to the unique fixed point x of T.

It cannot be emphasised enough that without results like Banach’s, we would have no guarantee of the convergence of an iterative algorithm: without such a theoretical grounding, a proposed iterative “algorithm” could not be trusted to perform as it claims.
Calculus in Convergence

One example of sequence, which are guaranteed to converge, are contraction mappings: the distance between a pair of transformed points $T(x_1), T(x_2)$ needs to be less than the distance between the points x_1, x_2 themselves.

There, Banach’s fixed point theorem guarantees the convergence T in a complete metric space: the sequence converges to the unique fixed point x of T.

It cannot be emphasised enough that without results like Banach’s, we would have no guarantee of the convergence of an iterative algorithm: without such a theoretical grounding, a proposed iterative “algorithm” could not be trusted to perform as it claims.
Calculus in Convergence

One example of sequence, which are guaranteed to converge, are contraction mappings: the distance between a pair of transformed points $T(x_1), T(x_2)$ needs to be less than the distance between the points x_1, x_2 themselves.

There, Banach’s fixed point theorem guarantees the convergence T in a complete metric space: the sequence converges to the unique fixed point x of T.

It cannot be emphasised enough that without results like Banach’s, we would have no guarantee of the convergence of an iterative algorithm: without such a theoretical grounding, a proposed iterative “algorithm” could not be trusted to perform as it claims.
Calculus in Convergence

One example of sequence, which are guaranteed to converge, are contraction mappings: the distance between a pair of transformed points $T(x_1), T(x_2)$ needs to be less than the distance between the points x_1, x_2 themselves.

There, Banach’s fixed point theorem guarantees the convergence T in a complete metric space: the sequence converges to the unique fixed point x of T.

It cannot be emphasised enough that without results like Banach’s, we would have no guarantee of the convergence of an iterative algorithm:

without such a theoretical grounding, a proposed iterative “algorithm” could not be trusted to perform as it claims.
Iterative algorithm generates a sequence

We assume that each iterative algorithm generates a sequence

$$(x_0, x_1, \ldots, x_k, \ldots) \text{ with } x_k \to x \text{ as } k \to \infty,$$

where the limit x is the solution to our problem.

Define the error at stage k as

$$e_k = d(x_k, x) \quad (= \|x_k - x\| \text{ when } X \text{ is a normed space}).$$

Therefore, we may view an iterative algorithm as generating a sequence of non-negative real number errors

$$(e_0, e_1, \ldots, e_k, \ldots) \text{ with } e_k \to 0 \text{ as } k \to \infty.$$

In theory, this sequence is infinite; but in practice, finite precision forces us to stop at some stage k when $e_k \leq \varepsilon$, for some chosen ε.

Jakub Mareček and Seán McGarraghy (UCD) Numerical Analysis and Software October 1, 2015 9 / 1
Iterative algorithm generates a sequence

We assume that each iterative algorithm generates a sequence

\[(x_0, x_1, \ldots, x_k, \ldots) \text{ with } x_k \to x \text{ as } k \to \infty,\]

where the limit \(x\) is the solution to our problem.

Define the error at stage \(k\) as

\[e_k = d(x_k, x) \quad (= \|x_k - x\| \text{ when } X \text{ is a normed space}).\]

Therefore, we may view an iterative algorithm as generating a sequence of non-negative real number errors

\[(e_0, e_1, \ldots, e_k, \ldots) \text{ with } e_k \to 0 \text{ as } k \to \infty.\]

In theory, this sequence is infinite; but in practice, finite precision forces us to stop at some stage \(k\) when \(e_k \leq \varepsilon\), for some chosen \(\varepsilon\).
Iterative algorithm generates a sequence

We assume that each iterative algorithm generates a sequence

\[(x_0, x_1, \ldots, x_k, \ldots) \quad \text{with} \quad x_k \to x \text{ as } k \to \infty,\]

where the limit \(x\) is the solution to our problem.

Define the error at stage \(k\) as

\[e_k = d(x_k, x) \quad (= \|x_k - x\| \text{ when } X \text{ is a normed space}).\]

Therefore, we may view an iterative algorithm as generating a sequence of non-negative real number errors

\[(e_0, e_1, \ldots, e_k, \ldots) \quad \text{with} \quad e_k \to 0 \text{ as } k \to \infty.\]

In theory, this sequence is infinite; but in practice, finite precision forces us to stop at some stage \(k\) when \(e_k \leq \varepsilon\), for some chosen \(\varepsilon\).
Iterative algorithm generates a sequence

We assume that each iterative algorithm generates a sequence

$$(x_0, x_1, \ldots, x_k, \ldots) \quad \text{with} \quad x_k \to x \text{ as } k \to \infty,$$

where the limit x is the solution to our problem.

Define the error at stage k as

$$e_k = d(x_k, x) \quad (= \|x_k - x\| \text{ when } X \text{ is a normed space}).$$

Therefore, we may view an iterative algorithm as generating a sequence of non-negative real number errors

$$(e_0, e_1, \ldots, e_k, \ldots) \quad \text{with} \quad e_k \to 0 \text{ as } k \to \infty.$$

In theory, this sequence is infinite; but in practice, finite precision forces us to stop at some stage k when $e_k \leq \varepsilon$, for some chosen ε.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (*i.e.*, complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \to x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the *order of convergence* of \((x_k)\).

This is *not* the same as the “order” of complexity introduced earlier.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (i.e., complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \rightarrow x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the order of convergence of \((x_k)\).

This is not the same as the “order” of complexity introduced earlier.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (i.e., complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \to x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the order of convergence of \((x_k)\).

This is not the same as the “order” of complexity introduced earlier.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (i.e., complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \to x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the order of convergence of \((x_k)\).

This is not the same as the “order” of complexity introduced earlier.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (i.e., complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \to x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the order of convergence of \((x_k)\).

This is not the same as the “order” of complexity introduced earlier.
Order of convergence of iterative algorithms

One of the most important features of an iterative algorithm is the speed with which it converges. Roughly speaking, this is the number of iterations necessary to obtain a fixed point with a specified accuracy.

Of course, speed of convergence as measured by number of iterations is not the only criterion by which we judge an algorithm: the amount of computation per iteration (i.e., complexity) is also important.

Definition

Let \((x_0, x_1, \ldots, x_k, \ldots)\) be a sequence with \(x_k \to x\), and let \(e_k = d(x_k, x)\). If there exists a number \(p\) and a constant \(C \neq 0\) such that

\[
\lim_{k \to \infty} \frac{e_k}{e_k^{p-1}} = C,
\]

then \(p\) is called the order of convergence of \((x_k)\).

This is *not* the same as the “order” of complexity introduced earlier.
Comments on Order of convergence

We assume that $e_k < 1$, for all k from some point on (that is, each x_k is in a fairly small neighbourhood of x).

A more usable definition is: (x_k) has order of convergence p if

$$e_k = Ce_k^{p_k - 1},$$

where C possibly depends on k, but can be bounded above by a constant.

Sequences with $p = 1$ are said to have Linear Convergence, while sequences with $p > 1$ have Super-Linear Convergence (a good thing!).
Comments on Order of convergence

We assume that $e_k < 1$, for all k from some point on (that is, each x_k is in a fairly small neighbourhood of x).

A more usable definition is: (x_k) has order of convergence p if

$$e_k = C e_{k-1}^p,$$

where C possibly depends on k, but can be bounded above by a constant.

Sequences with $p = 1$ are said to have Linear Convergence, while sequences with $p > 1$ have Super-Linear Convergence (a good thing!).
Comments on Order of convergence

We assume that $e_k < 1$, for all k from some point on (that is, each x_k is in a fairly small neighbourhood of x).

A more usable definition is: (x_k) has order of convergence p if

$$e_k = Ce_k^p,$$

where C possibly depends on k, but can be bounded above by a constant.

Sequences with $p = 1$ are said to have Linear Convergence, while sequences with $p > 1$ have Super-Linear Convergence (a good thing!).
Comments on Order of convergence

We assume that $e_k < 1$, for all k from some point on (that is, each x_k is in a fairly small neighbourhood of x).

A more usable definition is: (x_k) has order of convergence p if

$$e_k = Ce_k^{p-1}$$

where C possibly depends on k, but can be bounded above by a constant.

Sequences with $p = 1$ are said to have Linear Convergence, while sequences with $p > 1$ have Super-Linear Convergence (a good thing!).
Comments on Order of convergence

We assume that $e_k < 1$, for all k from some point on (that is, each x_k is in a fairly small neighbourhood of x).

A more usable definition is: (x_k) has order of convergence p if

$$e_k = C e_{k-1}^p,$$

where C possibly depends on k, but can be bounded above by a constant.

Sequences with $p = 1$ are said to have Linear Convergence, while sequences with $p > 1$ have Super-Linear Convergence (a good thing!).
Convergence of Successive Approximation

For simplicity, we look at the case $T : \mathbb{R} \rightarrow \mathbb{R}$, in one dimension.

Consider the sequence (x_k) with $x_k = T(x_{k-1})$, and assume it converges to a fixed point $x = T(x)$.

Assume further that at the fixed point the derivatives $T'(x), T''(x), \ldots, T^{(n)}(x)$ exist.

Expanding $T(x_k)$ in a Taylor series about the fixed point x, we get

\[
T(x_k) = T(x) + \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1},
\]

or

\[
T(x_k) - T(x) = \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1}.
\]
Convergence of Successive Approximation

For simplicity, we look at the case $T : \mathbb{R} \rightarrow \mathbb{R}$, in one dimension.

Consider the sequence (x_k) with $x_k = T(x_{k-1})$, and assume it converges to a fixed point $x = T(x)$.

Assume further that at the fixed point the derivatives $T'(x), T''(x), \ldots, T^{(n)}(x)$ exist.

Expanding $T(x_k)$ in a Taylor series about the fixed point x, we get

$$T(x_k) = T(x) + \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1},$$

or

$$T(x_k) - T(x) = \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1}.$$
Convergence of Successive Approximation

For simplicity, we look at the case $T : \mathbb{R} \to \mathbb{R}$, in one dimension.

Consider the sequence (x_k) with $x_k = T(x_{k-1})$, and assume it converges to a fixed point $x = T(x)$.

Assume further that at the fixed point the derivatives $T'(x), T''(x), \ldots, T^{(n)}(x)$ exist.

Expanding $T(x_k)$ in a Taylor series about the fixed point x, we get

$$T(x_k) = T(x) + \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \ldots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1},$$

or

$$T(x_k) - T(x) = \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \ldots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1}.$$
Convergence of Successive Approximation

For simplicity, we look at the case $T : \mathbb{R} \rightarrow \mathbb{R}$, in one dimension.

Consider the sequence (x_k) with $x_k = T(x_{k-1})$, and assume it converges to a fixed point $x = T(x)$.

Assume further that at the fixed point the derivatives $T'(x), T''(x), \ldots, T^{(n)}(x)$ exist.

Expanding $T(x_k)$ in a Taylor series about the fixed point x, we get

$$T(x_k) = T(x) + \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \ldots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1},$$

or

$$T(x_k) - T(x) = \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \ldots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1}.$$
Convergence of Successive Approximation

For simplicity, we look at the case $T : \mathbb{R} \rightarrow \mathbb{R}$, in one dimension.

Consider the sequence (x_k) with $x_k = T(x_{k-1})$, and assume it converges to a fixed point $x = T(x)$.

Assume further that at the fixed point the derivatives $T'(x), T''(x), \ldots, T^{(n)}(x)$ exist.

Expanding $T(x_k)$ in a Taylor series about the fixed point x, we get

$$T(x_k) = T(x) + \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1},$$

or

$$T(x_k) - T(x) = \frac{1}{1!} T'(x)(x_k - x) + \frac{1}{2!} T''(x)(x_k - x)^2 + \cdots + \frac{1}{n!} T^{(n)}(x)(x_k - x)^n + R_{n+1}.$$
Convergence of Successive Approximation (contd.)

Now $|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}$.

Recalling $|a + b| \leq |a| + |b|$ (triangle inequality), we get:

$$e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)|e_k|^2 + \cdots + \frac{1}{n!} T^{(n)}(x)|e_k|^n + |R_{n+1}|.$$

This expression allows us to determine the order of convergence of the successive approximation sequence ($x_k = T(x_{k-1})$) if we know the derivatives of T at the fixed point x.

Thus, we can deduce the following:

- If $T'(x) \neq 0$ then $e_{k+1} \approx T'(x)e_k$, that is, 1st order convergence.

- If $T'(x) = 0$, $T''(x) \neq 0$ then $e_{k+1} = |\frac{1}{2} T''(x)|e_k|^2 = \text{const.}e_k^2$, that is, 2nd order convergence.

- If $T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0$, $T^{(n)}(x) \neq 0$ then $e_{k+1} = |\frac{1}{n!} T''(x)|e_k|^n = \text{const.}e_k^n$, that is, nth order convergence.
Convergence of Successive Approximation (contd.)

Now \(|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1} \).

Recalling \(|a + b| \leq |a| + |b|\) (triangle inequality), we get:

\[
e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)|e_k^2 + \cdots + \frac{1}{n!} T^{(n)}(x)|e_k^n + |R_{n+1}|.
\]

This expression allows us to determine the order of convergence of the successive approximation sequence \((x_k = T(x_{k-1}))\) if we know the derivatives of \(T\) at the fixed point \(x\).

Thus, we can deduce the following:

- If \(T'(x) \neq 0\) then \(e_{k+1} \approx T'(x)e_k\), that is, 1st order convergence.

- If \(T'(x) = 0, T''(x) \neq 0\)
 then \(e_{k+1} = |\frac{1}{2} T''(x)|e_k^2 = \text{const}e_k^2\), that is, 2nd order convergence.

- If \(T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0, T^{(n)}(x) \neq 0\)
 then \(e_{k+1} = |\frac{1}{n!} T^{(n)}(x)|e_k^n = \text{const}e_k^n\), that is, \(n\)th order convergence.
Convergence of Successive Approximation (contd.)

Now $|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}$.

Recalling $|a + b| \leq |a| + |b|$ (triangle inequality), we get:

$$e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} |T''(x)|e_k^2 + \cdots + \frac{1}{n!} |T^{(n)}(x)|e_k^n + |R_{n+1}|.$$

This expression allows us to determine the order of convergence of the successive approximation sequence ($x_k = T(x_{k-1})$) if we know the derivatives of T at the fixed point x.

Thus, we can deduce the following:

- If $T'(x) \neq 0$ then $e_{k+1} \approx T'(x)e_k$, that is, 1st order convergence.

- If $T'(x) = 0$, $T''(x) \neq 0$
 then $e_{k+1} = \frac{1}{2} |T''(x)|e_k^2 = \text{const.} e_k^2$, that is, 2nd order convergence.

- If $T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0$, $T^{(n)}(x) \neq 0$
 then $e_{k+1} = \frac{1}{n!} |T^{(n)}(x)|e_k^n = \text{const.} e_k^n$, that is, nth order convergence.
Convergence of Successive Approximation (contd.)

Now \(| T(x_k) - T(x) | = |x_{k+1} - x| = e_{k+1} \).

Recalling \(|a + b| \leq |a| + |b|\) (triangle inequality), we get:

\[
e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)|e_k^2 + \cdots + \frac{1}{n!} T^{(n)}(x)|e_k^n + |R_{n+1}|.
\]

This expression allows us to determine the order of convergence of the successive approximation sequence \((x_k = T(x_{k-1}))\) if we know the derivatives of \(T\) at the fixed point \(x\).

Thus, we can deduce the following:

- If \(T'(x) \neq 0\) then \(e_{k+1} \approx T'(x)e_k\), that is, 1\(^{\text{st}}\) order convergence.

- If \(T'(x) = 0\), \(T''(x) \neq 0\) then \(e_{k+1} = \frac{1}{2} T''(x)|e_k^2 = \text{const}.e_k^2\), that is, 2\(^{\text{nd}}\) order convergence.

- If \(T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0\), \(T^{(n)}(x) \neq 0\) then \(e_{k+1} = \frac{1}{n!} T''(x)|e_k^n = \text{const}.e_k^n\), that is, \(n\)^{\text{th}} order convergence.
Convergence of Successive Approximation (contd.)

Now \(|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1} \).

Recalling \(|a + b| \leq |a| + |b| \) (triangle inequality), we get:

\[
e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)e_k^2 + \cdots + \frac{1}{n!} T^{(n)}(x)e_k^n + |R_{n+1}|.
\]

This expression allows us to determine the order of convergence of the successive approximation sequence \((x_k = T(x_{k-1}))\) if we know the derivatives of \(T\) at the fixed point \(x\).

Thus, we can deduce the following:

- If \(T'(x) \neq 0\) then \(e_{k+1} \approx T'(x)e_k\), that is, 1\(^\text{st}\) order convergence.

- If \(T'(x) = 0, \ T''(x) \neq 0\)
 then \(e_{k+1} = \frac{1}{2} T''(x)e_k^2 = \text{const}.e_k^2\), that is, 2\(^\text{nd}\) order convergence.

- If \(T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0, \ T^{(n)}(x) \neq 0\)
 then \(e_{k+1} = \frac{1}{n!} T''(x)e_k^n = \text{const}.e_k^n\), that is, \(n\(^\text{th}\)\) order convergence.
Convergence of Successive Approximation (contd.)

Now $|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}$.

Recalling $|a + b| \leq |a| + |b|$ (triangle inequality), we get:

$$e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)|e_k^2 + \cdots + \frac{1}{n!} T^{(n)}(x)|e_k^n + |R_{n+1}|.$$

This expression allows us to determine the order of convergence of the successive approximation sequence ($x_k = T(x_{k-1})$) if we know the derivatives of T at the fixed point x.

Thus, we can deduce the following:

- If $T'(x) \neq 0$ then $e_{k+1} \approx T'(x)e_k$, that is, 1st order convergence.

- If $T'(x) = 0$, $T''(x) \neq 0$
 then $e_{k+1} = \frac{1}{2} T''(x)|e_k^2 = \text{const.}e_k^2$, that is, 2nd order convergence.

- If $T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0$, $T^{(n)}(x) \neq 0$
 then $e_{k+1} = \frac{1}{n!} T''(x)|e_k^n = \text{const.}e_k^n$, that is, n^{th} order convergence.
Convergence of Successive Approximation (contd.)

Now \(|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}|.

Recalling \(|a + b| \leq |a| + |b|\) (triangle inequality), we get:

\[
e_{k+1} \leq |T'(x)|e_k + |\frac{1}{2} T''(x)|e_k^2 + \cdots + |\frac{1}{n!} T^{(n)}(x)|e_k^n + |R_{n+1}|.
\]

This expression allows us to determine the order of convergence of the successive approximation sequence \((x_k = T(x_{k-1}))\) if we know the derivatives of \(T\) at the fixed point \(x\).

Thus, we can deduce the following:

- If \(T'(x) \neq 0\) then \(e_{k+1} \approx T'(x)e_k\), that is, 1st order convergence.

- If \(T'(x) = 0, T''(x) \neq 0\)

 then \(e_{k+1} = |\frac{1}{2} T''(x)|e_k^2 = \text{const}.e_k^2\), that is, 2nd order convergence.

- If \(T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0, T^{(n)}(x) \neq 0\)

 then \(e_{k+1} = |\frac{1}{n!} T^{(n)}(x)|e_k^n = \text{const}.e_k^n\), that is, \(nth\) order convergence.
Convergence of Successive Approximation (contd.)

Now \(|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}. \)

Recalling \(|a + b| \leq |a| + |b|\) (triangle inequality), we get:

\[
e_{k+1} \leq |T'(x)|e_k + \frac{1}{2} T''(x)|e_k^2 + \cdots + \frac{1}{n!} T^{(n)}(x)|e_k^n + |R_{n+1}|.
\]

This expression allows us to determine the order of convergence of the successive approximation sequence \((x_k = T(x_{k-1}))\) if we know the derivatives of \(T\) at the fixed point \(x\).

Thus, we can deduce the following:

- If \(T'(x) \neq 0\) then \(e_{k+1} \approx T'(x)e_k\), that is, 1\(^{st}\) order convergence.

- If \(T'(x) = 0, T''(x) \neq 0\)
 then \(e_{k+1} = \frac{1}{2} T''(x)|e_k^2 = \text{const.}e_k^2\), that is, 2\(^{nd}\) order convergence.

- If \(T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0, T^{(n)}(x) \neq 0\)
 then \(e_{k+1} = \frac{1}{n!} T''(x)|e_k^n = \text{const.}e_k^n\), that is, \(n^{th}\) order convergence.
Convergence of Successive Approximation (contd.)

Now $|T(x_k) - T(x)| = |x_{k+1} - x| = e_{k+1}$.

Recalling $|a + b| \leq |a| + |b|$ (triangle inequality), we get:

$$e_{k+1} \leq |T'(x)|e_k + \frac{1}{2}T''(x)|e_k^2 + \cdots + \frac{1}{n!}T^{(n)}(x)|e_k^n + |R_{n+1}|.$$

This expression allows us to determine the order of convergence of the successive approximation sequence ($x_k = T(x_{k-1})$) if we know the derivatives of T at the fixed point x.

Thus, we can deduce the following:

- If $T'(x) \neq 0$ then $e_{k+1} \approx T'(x)e_k$, that is, 1$^\text{st}$ order convergence.

- If $T'(x) = 0$, $T''(x) \neq 0$
 then $e_{k+1} = \frac{1}{2}T''(x)|e_k^2 = \text{const.}e_k^2$, that is, 2$^\text{nd}$ order convergence.

- If $T'(x) = T''(x) = \cdots = T^{(n-1)}(x) = 0$, $T^{(n)}(x) \neq 0$
 then $e_{k+1} = \frac{1}{n!}T''(x)|e_k^n = \text{const.}e_k^n$, that is, n^{th} order convergence.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.
The first derivative is $T'(x) = (1 - a/x^2)/2$.
This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.
Hence, this algorithm has 2nd order convergence.
This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.

The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.

The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.

The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$. The first derivative is $T'(x) = (1 - a/x^2)/2$. This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence. This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.

♦
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = \frac{x_{k-1} + a/x_{k-1}}{2}.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$. The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.

The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2nd order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Newton’s algorithm for calculating \sqrt{a}

Example (Square Root)

One option for calculating \sqrt{a} in Homework Assignment 1 was:

$$x_k := T(x_{k-1}) = (x_{k-1} + a/x_{k-1})/2.$$

The mapping $T(x) = (x + a/x)/2$ has a fixed point $x = \sqrt{a}$, since $T(\sqrt{a}) = (\sqrt{a} + a/\sqrt{a})/2 = (\sqrt{a} + \sqrt{a})/2 = \sqrt{a}$.

The first derivative is $T'(x) = (1 - a/x^2)/2$.

This gives $T'(\sqrt{a}) = (1 - a/a)/2 = 0$.

Hence, this algorithm has 2\(^{nd}\) order convergence.

This is confirmed by showing that $T''(\sqrt{a}) \neq 0$, in general.
Order of convergence

The effect of 2nd order convergence is to double the number of correct digits at each iteration: \(e_k \approx e_{k-1}^2 \approx e_0^{2^k} \).

If \(e_0 = 2^{-1} \) then \(e_k \approx e_0^{2^k} = 2^{-2^k} \).

For \(k = 4 \) we get \(e_k = 2^{-16} \approx 10^{-5} \).

This means that \(k = 5 \) iterations are sufficient to give full IEEE single precision.
Order of convergence

The effect of 2nd order convergence is to double the number of correct digits at each iteration:

\[e_k \approx e_{k-1}^2 \approx e_0^{2^k}. \]

If \(e_0 = 2^{-1} \) then

\[e_k \approx e_0^{2^k} = 2^{-2^k}. \]

For \(k = 4 \) we get \(e_k = 2^{-16} \approx 10^{-5} \).

This means that \(k = 5 \) iterations are sufficient to give full IEEE single precision.
The effect of 2nd order convergence is to double the number of correct digits at each iteration: \(e_k \approx e_{k-1}^2 \approx e_0^{2^k} \).

If \(e_0 = 2^{-1} \) then \(e_k \approx e_0^{2^k} = 2^{-2^k} \).

For \(k = 4 \) we get \(e_k = 2^{-16} \approx 10^{-5} \).

This means that \(k = 5 \) iterations are sufficient to give full IEEE single precision.
Order of convergence

The effect of 2nd order convergence is to double the number of correct digits at each iteration: $e_k \approx e_{k-1}^2 \approx e_0^{2^k}$.

If $e_0 = 2^{-1}$ then $e_k \approx e_0^{2^k} = 2^{-2^k}$.

For $k = 4$ we get $e_k = 2^{-16} \approx 10^{-5}$.

This means that $k = 5$ iterations are sufficient to give full IEEE single precision.
Effect of higher order of convergence

Remark

It can be shown (see later) that the Bisect algorithm for root-finding has order of convergence 1, while Newton’s algorithm has order of convergence 2. Higher order of convergence generally requires knowing higher derivatives.

However, computing these higher derivatives can actually be more work than is saved by a smaller number of iterations!
Remark

It can be shown (see later) that the Bisect algorithm for root-finding has order of convergence 1, while Newton’s algorithm has order of convergence 2. Higher order of convergence generally requires knowing higher derivatives.

However, computing these higher derivatives can actually be more work than is saved by a smaller number of iterations!
Effect of higher order of convergence

Remark

It can be shown (see later) that
the Bisect algorithm for root-finding has order of convergence 1,
while Newton’s algorithm has order of convergence 2.
Higher order of convergence generally requires knowing higher derivatives.

However, computing these higher derivatives can actually be more work than is
saved by a smaller number of iterations!
Remark

It can be shown (see later) that the Bisect algorithm for root-finding has order of convergence 1, while Newton’s algorithm has order of convergence 2. Higher order of convergence generally requires knowing higher derivatives.

However, computing these higher derivatives can actually be more work than is saved by a smaller number of iterations!
Approximations during a calculation

Most iterative methods employ at least three types of approximation:

Discretisation means modelling a continuous set by a discrete or finite set, such as modelling \mathbb{R} with floating-point numbers, or replacing derivatives by finite differences.

Truncation means cutting off some parts of a complete model, e.g., using only a finite number of terms from an infinite Taylor series, or stopping after a finite number of iterations.

Rounding a representation of real numbers so as to employ finite amount of space and time in processing them, or printing them out as a result.
Approximations during a calculation

Most iterative methods employ at least three types of approximation:

Discretisation means modelling a continuous set by a discrete or finite set, such as modelling \mathbb{R} with floating-point numbers, or replacing derivatives by finite differences.

Truncation means cutting off some parts of a complete model, e.g., using only a finite number of terms from an infinite Taylor series, or stopping after a finite number of iterations.

Rounding a representation of real numbers so as to employ finite amount of space and time in processing them, or printing them out as a result.
Approximations during a calculation

Most iterative methods employ at least three types of approximation:

Discretisation means modelling a continuous set by a discrete or finite set, such as modelling \mathbb{R} with floating-point numbers, or replacing derivatives by finite differences.

Truncation means cutting off some parts of a complete model, e.g., using only a finite number of terms from an infinite Taylor series, or stopping after a finite number of iterations.

Rounding a representation of real numbers so as to employ finite amount of space and time in processing them, or printing them out as a result.
Rounding Error

Storing a number in floating point form introduces a rounding error because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$. If $x = +(0.12344999 \ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999 \ldots) \times 10^e$.

We can see that the error depends on the exponent e.
Rounding Error

Storing a number in floating point form introduces a rounding error because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$. If $x = +(0.12344999 \ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999 \ldots) \times 10^e$.

We can see that the error depends on the exponent e.
Rounding Error

Storing a number in floating point form introduces a rounding error because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$. If $x = +(0.12344999 \ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999 \ldots) \times 10^e$.

We can see that the error depends on the exponent e.

\diamondsuit
Rounding Error

Storing a number in floating point form introduces a **rounding error** because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$). If $x = +(0.12344999 \ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999 \ldots) \times 10^e$.

We can see that the error depends on the exponent e.

♦
Rounding Error

Storing a number in floating point form introduces a rounding error because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$). If $x = + (0.12344999 \ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999 \ldots) \times 10^e$.

We can see that the error depends on the exponent e.
Rounding Error

Storing a number in floating point form introduces a rounding error because some digits are discarded.

If δx is the rounding error, then the output of rounding x is $x + \delta x$, where δx may be negative, zero, or positive.

In the output of chopping, this δx is negative or zero.

What is the maximum magnitude of this error?

Example

Consider a base-10 system with 4 significant digits, $e_{\text{min}} = -8$, $e_{\text{max}} = +8$). If $x = +(0.12344999\ldots) \times 10^e$ then rounding produces $+(0.1234) \times 10^e$ and $\delta x = -(0.00004999\ldots) \times 10^e$.

We can see that the error depends on the exponent e.
Maximum roundoff error

We have $x = 0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_b \times b^e$
and x rounded $\approx 0.(m_1 m_2 \ldots m_t)_b \times b^e$,
so error $= 0.(00 \ldots 0 m_{t+1} \ldots)_b \times b^e$
$\approx b^{-t} \times b^e$ in the worst case
$= b^{e-t}$.
Maximum relative roundoff error

The relative roundoff error is the absolute value of the roundoff error divided by the number-to-be-rounded:

\[
\frac{b^{e-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_b \times b^e},
\]

\[
= \frac{b^{-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_b}.
\]

This expression achieves its maximum when the denominator is a minimum, i.e., when \(|x| = 0.(100 \ldots 0)_b = b^{-1} \).

Hence, relative rounding error is \(\frac{b^{-t}}{b^{-1}} = b^{1-t} \). We call this relative error the unit roundoff and denote it by \(u_r \), where

\[
ur = \begin{cases}
 b^{1-t} & \text{using chopping,} \\
 \frac{1}{2} b^{1-t} & \text{using rounding.}
\end{cases}
\]
Maximum relative roundoff error

The relative roundoff error is the absolute value of the roundoff error divided by the number-to-be-rounded:

\[
\text{Relative roundoff error} = \frac{b^{e-t}}{0.(m_1m_2\ldots m(tm_{t+1}\ldots)_b \times b^e},
\]

\[
= \frac{b^{-t}}{0.(m_1m_2\ldots m(tm_{t+1}\ldots)_b}.
\]

This expression achieves its maximum when the denominator is a minimum, i.e., when \(|x| = 0.(100\ldots0)_b = b^{-1}\).

Hence, relative rounding error is \(\frac{b^{-t}}{b^{-1}} = b^{1-t}\). We call this relative error the unit roundoff and denote it by \(u_r\), where

\[
\begin{align*}
 u_r &= \begin{cases}
 b^{1-t} & \text{using chopping,} \\
 \frac{1}{2}b^{1-t} & \text{using rounding.}
 \end{cases}
\end{align*}
\]
Maximum relative roundoff error

The relative roundoff error is the absolute value of the roundoff error divided by the number-to-be-rounded:

\[
\frac{b^{e-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_{b} \times b^e},
\]

\[
= \frac{b^{-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_{b}}.
\]

This expression achieves its maximum when the denominator is a minimum, i.e., when \(|x| = 0.(100 \ldots 0)_b = b^{-1}\).

Hence, relative rounding error is \(\frac{b^{-t}}{b^{-1}} = b^{1-t}\). We call this relative error the unit roundoff and denote it by \(u_r\), where

\[
ur = \begin{cases}
 b^{1-t} & \text{using chopping,} \\
 \frac{1}{2} b^{1-t} & \text{using rounding.}
\end{cases}
\]
Maximum relative roundoff error

The relative roundoff error is the absolute value of the roundoff error divided by the number-to-be-rounded:

\[\frac{b^{e-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_b \times b^e}, \]

\[= \frac{b^{-t}}{0.(m_1 m_2 \ldots m_t m_{t+1} \ldots)_b}. \]

This expression achieves its maximum when the denominator is a minimum, i.e., when \(|x| = 0.(100 \ldots 0)_b = b^{-1}. \)

Hence, relative rounding error is \(\frac{b^{-t}}{b^{-1}} = b^{1-t} \). We call this relative error the unit roundoff and denote it by \(u_r \), where

\[
u_r = \begin{cases}
 b^{1-t} & \text{using chopping,} \\
 \frac{1}{2}b^{1-t} & \text{using rounding.}
\end{cases}
\]
Machine Epsilon and Unit Roundoff

Roundoff error occurs when a number x falls between two adjacent floating point numbers.

The maximum distance between these two floating point numbers is $\varepsilon_m |x|$. Hence, the maximum roundoff error is half the distance between them.

Hence, relative roundoff error is

$$\frac{1}{2} \varepsilon_m |x| = \frac{1}{2} \varepsilon_m = u_r.$$

Thus, we see that the unit roundoff error u_r is half machine epsilon, i.e.,

$$u_r = \frac{\varepsilon_m}{2} = \frac{1}{2} b^{1-t}.$$
Machine Epsilon and Unit Roundoff

Roundoff error occurs when a number x falls between two adjacent floating point numbers.

The maximum distance between these two floating point numbers is $\varepsilon_m |x|$.

Hence, the maximum roundoff error is half the distance between them.

Hence, relative roundoff error is

$$\frac{1}{2} \frac{\varepsilon_m |x|}{|x|} = \frac{1}{2} \varepsilon_m = u_r.$$

Thus, we see that the unit roundoff error u_r is half machine epsilon, i.e.,

$$u_r = \frac{\varepsilon_m}{2} = \frac{1}{2} b^{1-t}.$$
Machine Epsilon and Unit Roundoff

Roundoff error occurs when a number x falls between two adjacent floating point numbers.

The maximum distance between these two floating point numbers is $\varepsilon_m|x|$. Hence, the maximum roundoff error is half the distance between them.

Hence, relative roundoff error is

$$\frac{1}{2} \frac{\varepsilon_m|x|}{|x|} = \frac{1}{2} \varepsilon_m = u_r.$$

Thus, we see that the unit roundoff error u_r is half machine epsilon, i.e.,

$$u_r = \frac{\varepsilon_m}{2} = \frac{1}{2} b^{1-t}.$$
Machine Epsilon and Unit Roundoff

Roundoff error occurs when a number x falls between two adjacent floating point numbers.

The maximum distance between these two floating point numbers is $\varepsilon_m |x|$. Hence, the maximum roundoff error is half the distance between them.

Hence, relative roundoff error is

$$\frac{1}{2} \frac{\varepsilon_m |x|}{|x|} = \frac{1}{2} \varepsilon_m = u_r.$$

Thus, we see that the unit roundoff error u_r is half machine epsilon, i.e.,

$$u_r = \frac{\varepsilon_m}{2} = \frac{1}{2} b^{1-t}.$$
Machine Epsilon and Unit Roundoff

Roundoff error occurs when a number x falls between two adjacent floating point numbers.

The maximum distance between these two floating point numbers is $\varepsilon_m|x|$. Hence, the maximum roundoff error is half the distance between them. Hence, relative roundoff error is

$$\frac{1}{2} \varepsilon_m|x| = \frac{1}{2} \varepsilon_m = u_r.$$

Thus, we see that the unit roundoff error u_r is half machine epsilon, i.e.,

$$u_r = \frac{\varepsilon_m}{2} = \frac{1}{2} b^{1-t}.$$
Some Exercises

Exercise

Given a computer with 3-state memory devices, design two different floating point number systems, where each number is stored in a word with $w = 3^k$ ternary digits and $k = 3, 4, 5$.

Assume that the exponent occupies one third (i.e., $\frac{w}{3} = 3^{k-1}$) of these digits.

Can we represent $\frac{1}{3}$ precisely in these systems?

Can we represent $\frac{1}{3}$ precisely in base 2 systems? If not, why not?
Some Exercises

Exercise

Given a computer with 3-state memory devices, design two different floating point number systems, where each number is stored in a word with \(w = 3^k \) ternary digits and \(k = 3, 4, 5 \).

Assume that the exponent occupies one third (i.e., \(\frac{w}{3} = 3^{k-1} \)) of these digits.

Can we represent \(\frac{1}{3} \) precisely in these systems?

Can we represent \(\frac{1}{3} \) precisely in base 2 systems? If not, why not?
Some Exercises

Exercise

Given a computer with 3-state memory devices, design two different floating point number systems, where each number is stored in a word with $w = 3^k$ ternary digits and $k = 3, 4, 5$.

Assume that the exponent occupies one third (i.e., $\frac{w}{3} = 3^{k-1}$) of these digits.

Can we represent $\frac{1}{3}$ precisely in these systems?

Can we represent $\frac{1}{3}$ precisely in base 2 systems? If not, why not?
Floating Point Arithmetic Operations

Errors occur when performing arithmetic operations even if the operands and the operation are exact.

This is because the result of the operation may not be representable.

For example, the numbers 103.366 and 33.2977 are both representable in a base-10 number system with 6 significant digits, but $103.366 + 33.2977 = 136.6637$ is not, as it has 7 digits of precision.

This number would be rounded to the nearest representable number, 136.664, giving an error of 0.0003.
Floating Point Arithmetic Operations

Errors occur when performing arithmetic operations even if the operands and the operation are exact.

This is because the result of the operation may not be representable.

For example, the numbers 103.366 and 33.2977 are both representable in a base-10 number system with 6 significant digits, but $103.366 + 33.2977 = 136.6637$ is not, as it has 7 digits of precision.

This number would be rounded to the nearest representable number, 136.664, giving an error of 0.0003.
Floating Point Arithmetic Operations

Errors occur when performing arithmetic operations even if the operands and the operation are exact.

This is because the result of the operation may not be representable.

For example, the numbers 103.366 and 33.2977 are both representable in a base-10 number system with 6 significant digits, but $103.366 + 33.2977 = 136.6637$ is not, as it has 7 digits of precision.

This number would be rounded to the nearest representable number, 136.664, giving an error of 0.0003.
Errors occur when performing arithmetic operations even if the operands and the operation are exact.

This is because the result of the operation may not be representable.

For example, the numbers 103.366 and 33.2977 are both representable in a base-10 number system with 6 significant digits, but $103.366 + 33.2977 = 136.6637$ is not, as it has 7 digits of precision.

This number would be rounded to the nearest representable number, 136.664, giving an error of 0.0003.
Floating Point Arithmetic Operations

Errors occur when performing arithmetic operations even if the operands and the operation are exact.

This is because the result of the operation may not be representable.

For example, the numbers 103.366 and 33.2977 are both representable in a base-10 number system with 6 significant digits, but $103.366 + 33.2977 = 136.6637$ is not, as it has 7 digits of precision.

This number would be rounded to the nearest representable number, 136.664, giving an error of 0.0003.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

$$\text{round}(a \circ b) = (a \circ b)(1 + \delta),$$

where \circ is one of $\{=, +, -, \times, /\}$ and $|\delta| \leq u_r$.

This is called the Standard Model of floating point arithmetic.

The interpretation of the model is:

$\text{round}(a \circ b)$ is the result of calculating $a \circ b$ exactly and then rounding this exact result.

Ideally, $x \circ y = \text{round}(x \circ y)$ (i.e., floating point operations \circ produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as $x \circ y$ is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

\[\text{round}(a \circ b) = (a \circ b)(1 + \delta), \]

where \(\circ \) is one of \{\(=, +, -, \times, /\)\} and \(|\delta| \leq u_r\).

This is called the Standard Model of floating point arithmetic.

The interpretation of the model is:
\(\text{round}(a \circ b) \) is the result of calculating \(a \circ b \) exactly and then rounding this exact result.

Ideally, \(x \circ y = \text{round}(x \circ y) \) (i.e., floating point operations \(\circ \) produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as \(x \circ y \) is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

\[\text{round}(a \circ b) = (a \circ b)(1 + \delta), \]

where \(\circ \) is one of \{\(=\), \(+\), \(\ -\), \(\times\), \(/\)\} and \(|\delta| \leq u_r \).

This is called the Standard Model of floating point arithmetic.

The interpretation of the model is:
\(\text{round}(a \circ b) \) is the result of calculating \(a \circ b \) exactly and then rounding this exact result.

Ideally, \(x \hat{\circ} y = \text{round}(x \circ y) \) (i.e., floating point operations \(\hat{\circ} \) produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as \(x \circ y \) is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

\[\text{round}(a \, \text{op} \, b) = (a \, \text{op} \, b)(1 + \delta), \]

where \(\text{op} \) is one of \(\{\,=, +, -, \times, /\} \) and \(|\delta| \leq u_r \).

This is called the Standard Model of floating point arithmetic.

The interpretation of the model is:
\[\text{round}(a \, \text{op} \, b) \] is the result of calculating \(a \, \text{op} \, b \) exactly and then rounding this exact result.

Ideally, \(x \, \hat{\text{op}} \, y = \text{round}(x \, \text{op} \, y) \) (i.e., floating point operations \(\hat{\text{op}} \) produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as \(x \, \text{op} \, y \) is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

$$\text{round}(a \circ p b) = (a \circ p b)(1 + \delta),$$

where $\circ p$ is one of $\{=, +, -, \times, /\}$ and $|\delta| \leq u_r$.

This is called the Standard Model of floating point arithmetic.

The interpretation of the model is:

round($a \circ p b$) is the result of calculating $a \circ p b$ exactly and then rounding this exact result.

Ideally, $x \hat{\circ} p y = \text{round}(x \circ p y)$ (i.e., floating point operations $\hat{\circ} p$ produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as $x \circ p y$ is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

\[\text{round}(a \text{ op } b) = (a \text{ op } b)(1 + \delta), \]

where \(\text{op} \) is one of \{=, +, −, ×, /\} and \(|\delta| \leq u_r\).

This is called the **Standard Model** of floating point arithmetic.

The interpretation of the model is:

\(\text{round}(a \text{ op } b) \) is the result of calculating \(a \text{ op } b \) exactly and then rounding this exact result.

Ideally, \(x \hat{\text{ op }} y = \text{round}(x \text{ op } y) \) (i.e., floating point operations \(\hat{\text{op}} \) produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal as long as \(x \text{ op } y \) is within the range of the floating point system.
Standard Model of Floating Point Arithmetic

In general, the result of a floating-point arithmetic operation is

\[\text{round}(a \circ_p b) = (a \circ_p b)(1 + \delta), \]

where \(\circ_p \) is one of \(\{=, +, -, \times, /\} \) and \(|\delta| \leq u_r \).

This is called the **Standard Model** of floating point arithmetic.

The interpretation of the model is:

\(\text{round}(a \circ_p b) \) is the result of

calculating \(a \circ_p b \) exactly and

then rounding this exact result.

Ideally, \(x \circ_P y = \text{round}(x \circ_p y) \)

(\(i.e., \) floating point operations \(\circ_P \) produce correctly rounded results).

Many machines, such as those satisfying the IEEE floating point standard (see below) achieve this ideal

as long as \(x \circ_p y \) is within the range of the floating point system.
Floating Point Arithmetic is not Associative

However, floating point addition and multiplication are commutative but *not* associative. This makes forward error analysis difficult.

Example

For example, with base-10 number system with 3 significant digits, $e_{\text{min}} = -5, e_{\text{max}} = +5$ and $x = -1.00, y = 1.00, \text{and } z = 0.001$,

$$\text{round}(\text{round}(x + y) + z) \neq \text{round}(x + \text{round}(y + z)),$$

$$\text{round}(x + y) = \text{round}(-1.0 + 1.0) = 0.0, \quad \text{round}(\text{round}(x + y) + z) = 0.001,$$

$$\text{round}(y + z) = \text{round}(1.0 + 0.001) = 1.0, \quad \text{round}(x + \text{round}(y + z)) = \text{round}(-1.0 + 1.0),$$
Floating Point Arithmetic is not Associative

However, floating point addition and multiplication are commutative but not associative. This makes forward error analysis difficult.

Example

For example, with base-10 number system with 3 significant digits, $e_{\text{min}} = -5$, $e_{\text{max}} = +5$ and $x = -1.00$, $y = 1.00$, and $z = 0.001$,

\[
\text{round(}\text{round(}x + y\text{)} + z\text{) } \neq \text{round(}x + \text{round(}y + z\text{)}\text{)},
\]

\[
\text{round(}x + y\text{)} = \text{round(}−1.0 + 1.0\text{)} = 0.0, \quad \text{round(}\text{round(}x + y\text{)} + z\text{)} = 0.001,
\]

\[
\text{round}(y + z) = \text{round}(1.0 + 0.001) = 1.0, \quad \text{round(}x + \text{round(}y + z\text{)}\text{)} = \text{round(}−1.0 + 1.0\text{)} = 0.001.
\]
Floating Point Arithmetic is not Associative

However, floating point addition and multiplication are commutative but not associative. This makes forward error analysis difficult.

Example

For example, with base-10 number system with 3 significant digits, $e_{\text{min}} = -5$, $e_{\text{max}} = +5$ and $x = -1.00$, $y = 1.00$, and $z = 0.001$,

\[
\text{round(\text{round}(x + y) + z)} \neq \text{round(x + \text{round(y + z)})},
\]

\[
\text{round(x + y)} = \text{round(-1.0 + 1.0)} = 0.0, \quad \text{round(\text{round(x + y) + z})} = 0.001,
\]

\[
\text{round(y + z)} = \text{round(1.0 + 0.001)} = 1.0, \quad \text{round(x + \text{round(y + z)})} = \text{round(-1.0 + 1.0)} = 0.0.
\]
Floating Point Arithmetic is not Associative

However, floating point addition and multiplication are commutative but not associative. This makes forward error analysis difficult.

Example

For example, with base-10 number system with 3 significant digits, $e_{\text{min}} = -5$, $e_{\text{max}} = +5$ and $x = -1.00$, $y = 1.00$, and $z = 0.001$,

$$\text{round}(\text{round}(x + y) + z) \neq \text{round}(x + \text{round}(y + z)),$$

$$\text{round}(x + y) = \text{round}(-1.0 + 1.0) = 0.0, \quad \text{round}(\text{round}(x + y) + z) = 0.001,$$

$$\text{round}(y + z) = \text{round}(1.0 + 0.001) = 1.0, \quad \text{round}(x + \text{round}(y + z)) = \text{round}(-1.0 +$$
Floating Point Arithmetic is not Associative

However, floating point addition and multiplication are commutative but not associative. This makes forward error analysis difficult.

Example

For example, with base-10 number system with 3 significant digits, $e_{\text{min}} = -5$, $e_{\text{max}} = +5$ and $x = -1.00$, $y = 1.00$, and $z = 0.001$,

\[
\text{round}(\text{round}(x + y) + z) \neq \text{round}(x + \text{round}(y + z)),
\]

\[
\text{round}(x + y) = \text{round}(-1.0 + 1.0) = 0.0, \quad \text{round}(\text{round}(x + y) + z) = 0.001,
\]

\[
\text{round}(y + z) = \text{round}(1.0 + 0.001) = 1.0, \quad \text{round}(x + \text{round}(y + z)) = \text{round}(-1.0 + 1.0) = 0.0.
\]
Floating Point Arithmetic is not Associative

In general, if δ is a positive floating point number a little less than ε_m, then $(1 + \delta) + \delta = 1$ but $1 + (\delta + \delta) > 1$.

Small errors creep in for numbers, which are periodic in base-2, as we have seen in the previous chapter.

Moral: Try to avoid the equality test in dealing with floating-point numbers (and consider ε_m when testing the absolute values of differences as well).
Floating Point Arithmetic is not Associative

In general, if δ is a positive floating point number a little less than ε_m, then $(1 + \delta) + \delta = 1$ but $1 + (\delta + \delta) > 1$.

Small errors creep in for numbers, which are periodic in base-2, as we have seen in the previous chapter.

Moral: Try to avoid the equality test in dealing with floating-point numbers (and consider ε_m when testing the absolute values of differences as well).
Floating Point Arithmetic is not Associative

In general, if δ is a positive floating point number a little less than ε_m, then $(1 + \delta) + \delta = 1$ but $1 + (\delta + \delta) > 1$.

Small errors creep in for numbers, which are periodic in base-2, as we have seen in the previous chapter.

Moral: Try to avoid the equality test in dealing with floating-point numbers (and consider ε_m when testing the absolute values of differences as well).
Floating Point Arithmetic is not Associative

In general, if δ is a positive floating point number a little less than ε_m, then $(1 + \delta) + \delta = 1$ but $1 + (\delta + \delta) > 1$.

Small errors creep in for numbers, which are periodic in base-2, as we have seen in the previous chapter.

Moral: Try to avoid the equality test in dealing with floating-point numbers (and consider ε_m when testing the absolute values of differences as well).
Composition and Propagation of Error

Performing a floating point arithmetic operation \(\text{round}(x \circ y) \) involves two sources of error:

- errors in the operands \(x \) and \(y \), and
- an error in storing the result, attributed to the operator.

Let \(x \) and \(y \) be the true operands and
\[
\hat{x} = x(1 + \delta_x) \quad \text{and} \quad \hat{y} = y(1 + \delta_y)
\]
be the actual operands used in the operation, where \(\delta_x, \delta_y \leq u_r \).

Let \((x \circ \hat{y}) = (x \circ y)(1 + \delta) \) be the result of the floating point operation \(\circ \), where \(\delta \leq u_r \).
Composition and Propagation of Error

Performing a floating point arithmetic operation $\text{round}(x \circ y)$ involves two sources of error:

- errors in the operands x and y, and
- an error in storing the result, attributed to the operator.

Let x and y be the true operands and
\[\hat{x} = x(1 + \delta_x) \] and \[\hat{y} = y(1 + \delta_y) \] be the actual operands used in the operation, where $\delta_x, \delta_y \leq u_r$.

Let \[(x \circ \hat{y}) = (x \circ y)(1 + \delta) \] be the result of the floating point operation \circ, where $\delta \leq u_r$.
Composition and Propagation of Error

Performing a floating point arithmetic operation $\text{round}(x \circ p y)$ involves two sources of error:

- errors in the operands x and y, and
- an error in storing the result, attributed to the operator.

Let x and y be the true operands and
\[\hat{x} = x(1 + \delta_x) \] and \[\hat{y} = y(1 + \delta_y) \] be the actual operands used in the operation, where $\delta_x, \delta_y \leq u_r$.

Let $(x \circ p y) = (x \circ p y)(1 + \delta)$ be the result of the floating point operation $\circ p$, where $\delta \leq u_r$.
Composition and Propagation of Error

Performing a floating point arithmetic operation $\text{round}(x \circ p y)$ involves two sources of error:

- errors in the operands x and y, and
- an error in storing the result, attributed to the operator.

Let x and y be the true operands and
\[\hat{x} = x(1 + \delta_x) \text{ and } \hat{y} = y(1 + \delta_y) \]
be the actual operands used in the operation, where $\delta_x, \delta_y \leq u_r$.

Let $(x \circ p y) = (x \circ p y)(1 + \delta)$ be the result of the floating point operation $\circ p$, where $\delta \leq u_r$.

Jakub Mareček and Seán McGarraghy (UCD) Numerical Analysis and Software October 1, 2015 27 / 1
Composition and Propagation of Error

Performing a floating point arithmetic operation $\text{round}(x \circ p y)$ involves two sources of error:

- errors in the operands x and y, and
- an error in storing the result, attributed to the operator.

Let x and y be the true operands and
\[\hat{x} = x(1 + \delta_x) \text{ and } \hat{y} = y(1 + \delta_y) \]
be the actual operands used in the operation, where $\delta_x, \delta_y \leq u_r$.

Let $(x \circ p y) = (x \circ p y)(1 + \delta)$ be the result of the floating point operation $\circ p$, where $\delta \leq u_r$.
Composition and Propagation of Error

Performing a floating point arithmetic operation \(\text{round}(x \circ p y) \) involves two sources of error:

- errors in the operands \(x \) and \(y \), and
- an error in storing the result, attributed to the operator.

Let \(x \) and \(y \) be the true operands and \(\hat{x} = x(1 + \delta_x) \) and \(\hat{y} = y(1 + \delta_y) \) be the actual operands used in the operation, where \(\delta_x, \delta_y \leq u_r \).

Let \((x \circ p y) = (x \circ p y)(1 + \delta) \) be the result of the floating point operation \(\circ p \), where \(\delta \leq u_r \).
Propagated and Generated Error

The total error in the result is

\[E = |(x \circ y) - (\hat{x} \circ \hat{y})|, \]
\[= |(x \circ y - \hat{x} \circ \hat{y}) - (\hat{x} \circ \hat{y} - \hat{x} \circ \hat{y})|. \]

The first term \((x \circ y - \hat{x} \circ \hat{y})\) is called \textit{propagated error} and is due to errors in the operands alone.

The second term is called \textit{generated error} and is due to the operation alone.

The generated error is

\[|\hat{x} \circ \hat{y} - \hat{x} \circ \hat{y}| = |\hat{x} \circ \hat{y} - (\hat{x} \circ \hat{y})(1 + \delta)| \leq |\hat{x} \circ \hat{y}| |\delta|, \]

where \(|\delta| \leq u_r\).
Propagated and Generated Error

The total error in the result is

\[E = |(x \circ y) - (\hat{x} \circ \hat{y})|, \]
\[= |(x \circ y - \hat{x} \circ \hat{y}) - (\hat{x} \circ \hat{y} - \hat{x} \circ \hat{y})|. \]

The first term \((x \circ y - \hat{x} \circ \hat{y})\) is called \textit{propagated error} and is due to errors in the operands alone.

The second term is called \textit{generated error} and is due to the operation alone.

The generated error is

\[|\hat{x} \circ \hat{y} - \hat{x} \circ \hat{y}| = |\hat{x} \circ \hat{y} - (\hat{x} \circ \hat{y})(1 + \delta)| \leq |\hat{x} \circ \hat{y}||\delta|, \]

where \(|\delta| \leq u_r\).
Propagated and Generated Error

The total error in the result is

\[E = |(x \circ \text{op} \ y) - (\hat{x} \circ \hat{\text{op}} \ \hat{y})|, \]
\[= |(x \circ \text{op} \ y - \hat{x} \circ \text{op} \ \hat{y}) - (\hat{x} \circ \hat{\text{op}} \ \hat{y} - \hat{x} \circ \text{op} \ \hat{y})| . \]

The first term \((x \circ \text{op} \ y - \hat{x} \circ \text{op} \ \hat{y})\) is called \textit{propagated error} and is due to errors in the operands alone.

The second term is called \textit{generated error} and is due to the operation alone.

The generated error is

\[|\hat{x} \circ \text{op} \ \hat{y} - \hat{x} \circ \hat{\text{op}} \ \hat{y}| = |\hat{x} \circ \text{op} \ \hat{y} - (\hat{x} \circ \text{op} \ \hat{y})(1 + \delta)| \leq |\hat{x} \circ \text{op} \ \hat{y}||\delta| , \]

where \(|\delta| \leq u_r\).
Propagated and Generated Error

The total error in the result is

\[E = |(x \, \text{op} \, y) - (\hat{x} \, \text{op} \, \hat{y})|, \]
\[= |(x \, \text{op} \, y - \hat{x} \, \text{op} \, \hat{y}) - (\hat{x} \, \text{op} \, \hat{y} - \hat{x} \, \text{op} \, \hat{y})|. \]

The first term \((x \, \text{op} \, y - \hat{x} \, \text{op} \, \hat{y})\) is called \textit{propagated error} and is due to errors in the operands alone.

The second term is called \textit{generated error} and is due to the operation alone.

The generated error is

\[|\hat{x} \, \text{op} \, \hat{y} - \hat{x} \, \text{op} \, \hat{y}| = |\hat{x} \, \text{op} \, \hat{y} - (\hat{x} \, \text{op} \, \hat{y})(1 + \delta)| \leq |\hat{x} \, \text{op} \, \hat{y}| |\delta|, \]

where \(|\delta| \leq u_r\).
Propagated Error of Addition and Subtraction

To develop the propagated error further we must look at the individual operations. If E_{AS} is the error propagated by addition or subtraction then we can show

$$E_{AS} \leq (|x| + |y|)u_r.$$

This gives no cause for concern but it hides a problem, known as cancellation error, that may occur when subtracting floating point numbers that are close to each other.

First, we emphasise that subtracting close numbers is not necessarily dangerous.
Propagated Error of Addition and Subtraction

To develop the propagated error further we must look at the individual operations. If E_{AS} is the error propagated by addition or subtraction then we can show

$$E_{AS} \leq (|x| + |y|)u_r.$$

This gives no cause for concern but it hides a problem, known as \textit{cancellation error}, that may occur when subtracting floating point numbers that are close to each other.

First, we emphasise that subtracting close numbers is \textit{not} necessarily dangerous.
Propagated Error of Addition and Subtraction

To develop the propagated error further we must look at the individual operations. If E_{AS} is the error propagated by addition or subtraction then we can show

$$E_{AS} \leq (|x| + |y|)u_r.$$

This gives no cause for concern but it hides a problem, known as *cancellation error*, that may occur when subtracting floating point numbers that are close to each other.

First, we emphasise that subtracting close numbers is *not* necessarily dangerous.
Propagated Error of Addition and Subtraction

To develop the propagated error further we must look at the individual operations. If E_{AS} is the error propagated by addition or subtraction then we can show

$$E_{AS} \leq (|x| + |y|)u_r.$$

This gives no cause for concern but it hides a problem, known as *cancellation error*, that may occur when subtracting floating point numbers that are close to each other.

First, we emphasise that subtracting close numbers is *not* necessarily dangerous.
Example with $x = 101$, $y = 102$

Consider base-10 numbers with 3 significant digits and two representable numbers $x = 102$ and $y = 101$.

These numbers are as close as can be in the floating-point system we consider.

$$\text{round(\text{round}(x) - \text{round}(y))} = \text{round}(102 - 101) = \text{round}(1.00),$$

and the error is 0.
Example with $x = 101$, $y = 102$

Consider base-10 numbers with 3 significant digits and two representable numbers $x = 102$ and $y = 101$. These numbers are as close as can be in the floating-point system we consider.

$$
\text{round(\text{round}(x) - \text{round}(y))} = \text{round}(102 - 101) = \text{round}(1.00),
$$

and the error is 0.
Example with $x = 100.5$, $y = 100.4$

Consider $x = 100.5$ and $y = 100.4$ and

$$\frac{x + y}{x - y}.$$

The exact result is $\frac{100.5 + 100.4}{100.5 - 100.4} = \frac{200.9}{0.1} = 2009$.

What if the computer used base-10 floating-point numbers with 3 significant digits?
Example with $x = 100.5$, $y = 100.4$

Consider $x = 100.5$ and $y = 100.4$ and

$$\frac{x + y}{x - y}.$$

The exact result is $\frac{100.5 + 100.4}{100.5 - 100.4} = \frac{200.9}{0.1} = 2009$.

What if the computer used base-10 floating-point numbers with 3 significant digits?
Example with $x = 100.5$, $y = 100.4$

Consider $x = 100.5$ and $y = 100.4$ and

$$\frac{x + y}{x - y}.$$

The exact result is $\frac{100.5 + 100.4}{100.5 - 100.4} = \frac{200.9}{0.1} = 2009$.

What if the computer used base-10 floating-point numbers with 3 significant digits?
Example with $x = 100.5$, $y = 100.4$

If this result is rounded to 3 digits it becomes 2010.0 with a relative error of $1/2009$, about $\frac{1}{20} \%$, and attributable to the subtraction operation.

However, x and y are not representable in base-10 numbers with 3 significant digits and are rounded to 101 and 100 respectively.

The result is now $\frac{101+100}{101-100} = \frac{201}{1} = 201$

which is representable but has a relative error of $\frac{2009-201}{2009} = \frac{1808}{2009}$, about 90\%.
Example with $x = 100.5$, $y = 100.4$

If this result is rounded to 3 digits it becomes 2010.0 with a relative error of $1/2009$, about $\frac{1}{20} \%$, and attributable to the subtraction operation.

However, x and y are not representable in base-10 numbers with 3 significant digits and are rounded to 101 and 100 respectively.

The result is now $\frac{101+100}{101-100} = 201/1 = 201$

which is representable but has a relative error of $\frac{2009-201}{2009} = \frac{1808}{2009}$, about 90%.
Example with $x = 100.5$, $y = 100.4$

If this result is rounded to 3 digits it becomes 2010.0 with a relative error of 1/2009, about $\frac{1}{20}\%$, and attributable to the subtraction operation.

However, x and y are not representable in base-10 numbers with 3 significant digits and are rounded to 101 and 100 respectively.

The result is now $\frac{101+100}{101-100} = 201/1 = 201$

which is representable but has a relative error of $\frac{2009-201}{2009} = \frac{1808}{2009}$, about 90%.
Example with $x = 100.5$, $y = 100.4$

If this result is rounded to 3 digits it becomes 2010.0 with a relative error of $1/2009$, about $\frac{1}{20} \%$, and attributable to the subtraction operation.

However, x and y are not representable in base-10 numbers with 3 significant digits and are rounded to 101 and 100 respectively.

The result is now $\frac{101+100}{101-100} = 201/1 = 201$

which is representable but has a relative error of $\frac{2009-201}{2009} = \frac{1808}{2009}$, about 90\%.
Cancellation Error

This huge error is due entirely to the rounding that occurred before the subtraction took place and is not the fault of the subtraction operation (it can work only with what it’s given).

This error is called cancellation error because if the first k digits of the operands are equal then the subtraction operation sets the first k leading digits of the result to zero. When this result is normalised it contains only $t - k$ significant digits.
Cancellation Error

This huge error is due entirely to the rounding that occurred before the subtraction took place and is not the fault of the subtraction operation (it can work only with what it’s given).

This error is called cancellation error because if the first \(k \) digits of the operands are equal then the subtraction operation sets the first \(k \) leading digits of the result to zero. When this result is normalised it contains only \(t - k \) significant digits.
Cancellation Error

This huge error is due entirely to the rounding that occurred \textit{before} the subtraction took place and is not the fault of the subtraction operation (it can work only with what it’s given).

This error is called \textit{cancellation error} because if the first k digits of the operands are equal then the subtraction operation sets the first k leading digits of the result to zero.

When this result is normalised it contains only $t - k$ significant digits.
Cancellation Error

This huge error is due entirely to the rounding that occurred before the subtraction took place and is not the fault of the subtraction operation (it can work only with what it’s given).

This error is called *cancellation error* because if the first k digits of the operands are equal then the subtraction operation sets the first k leading digits of the result to zero. When this result is normalised it contains only $t - k$ significant digits.
Relative Propagated Error of subtraction

It can be shown that the relative propagated error of subtraction is

\[E_{Sr} \leq 2u_r \frac{\max\{|x|, |y|\}}{|x - y|}. \]

\(E_{Sr} \) will be large if \(x \) is close to \(y \).

Also, the larger \(\max\{|x|, |y|\} \) is, the greater is \(E_{Sr} \).

Theorem (Cancellation Error)

In a base-\(b \) floating point system with \(t \) significant digits, the relative error in round(\(x - y \)) can be as large as \(b - 1 \).

This tells us that in base 2 (\(b = 2 \) so \(b - 1 = 1 \)) the relative error can be as much as 1, i.e., 100% out.
Relative Propagated Error of subtraction

It can be shown that the relative propagated error of subtraction is

\[E_{Sr} \leq 2u_r \frac{\max\{|x|, |y|\}}{|x - y|}. \]

\(E_{Sr} \) will be large if \(x \) is close to \(y \).

Also, the larger \(\max\{|x|, |y|\} \) is, the greater is \(E_{Sr} \).

Theorem (Cancellation Error)

In a base-\(b \) floating point system with \(t \) significant digits, the relative error in round(\(x - y \)) can be as large as \(b - 1 \).

This tells us that in base 2 (\(b = 2 \) so \(b - 1 = 1 \)) the relative error can be as much as 1, i.e., 100% out.
Relative Propagated Error of subtraction

It can be shown that the relative propagated error of subtraction is

\[E_{Sr} \leq 2u_r \frac{\max\{|x|, |y|\}}{|x - y|}. \]

\(E_{Sr} \) will be large if \(x \) is close to \(y \).

Also, the larger \(\max\{|x|, |y|\} \) is, the greater is \(E_{Sr} \).

Theorem (Cancellation Error)

In a base-b floating point system with \(t \) significant digits, the relative error in \(\text{round}(x - y) \) can be as large as \(b - 1 \).

This tells us that in base 2 (\(b = 2 \) so \(b - 1 = 1 \))
the relative error can be as much as 1, i.e., 100% out.
Relative Propagated Error of subtraction

It can be shown that the relative propagated error of subtraction is

\[E_{Sr} \leq 2u_r \frac{\max\{|x|, |y|\}}{|x - y|}. \]

\(E_{Sr}\) will be large if \(x\) is close to \(y\).

Also, the larger \(\max\{|x|, |y|\}\) is, the greater is \(E_{Sr}\).

Theorem (Cancellation Error)

In a base-\(b\) floating point system with \(t\) significant digits, the relative error in \(\text{round}(x - y)\) can be as large as \(b - 1\).

This tells us that in base 2 (\(b = 2\) so \(b - 1 = 1\)) the relative error can be as much as 1, i.e., 100% out.
Relative Propagated Error of subtraction

It can be shown that the relative propagated error of subtraction is

$$E_{SR} \leq 2u_r \max\{|x|, |y|\} \frac{|x - y|}{|x - y|}.$$

E_{SR} will be large if x is close to y.

Also, the larger $\max\{|x|, |y|\}$ is, the greater is E_{SR}.

Theorem (Cancellation Error)

In a base-b floating point system with t significant digits, the relative error in round($x - y$) can be as large as $b - 1$.

This tells us that in base 2 ($b = 2$ so $b - 1 = 1$) the relative error can be as much as 1, i.e., 100% out.
Condition and stability

We must separate

- the difficulties associated with a *problem* which requires a numerical solution from
- those associated with a *computational algorithm* which is used to obtain the numerical solution.

These difficulties are described by

- the *condition* of a problem
- and
- the *stability* of an algorithm.
Condition and stability

We must separate

- the difficulties associated with a *problem* which requires a numerical solution from
- those associated with a *computational algorithm* which is used to obtain the numerical solution.

These difficulties are described by

- the *condition* of a problem
 and
- the *stability* of an algorithm.
Condition and stability

We must separate

- the difficulties associated with a *problem* which requires a numerical solution
- those associated with a *computational algorithm* which is used to obtain the numerical solution.

These difficulties are described by

- the **condition** of a problem
- the **stability** of an algorithm.
Condition and stability

We must separate

- the difficulties associated with a *problem* which requires a numerical solution from
- those associated with a *computational algorithm* which is used to obtain the numerical solution.

These difficulties are described by

- the *condition* of a problem

 and

- the *stability* of an algorithm.
Condition of a problem: example

Consider the problem of solving the system of two linear equations:

\[
\begin{align*}
(A) \quad (2.0000)x + (0.6667)y &= 2.0000 \\
(1.0000)x + (0.3333)y &= 1.0000
\end{align*}
\]

If we subtract twice the second equation from the first, we obtain \((0.0001)y = 0.0000\) which yields the unique solution

\[
\begin{align*}
x &= 1.0000 \\
y &= 0.0000
\end{align*}
\]
Consider the problem of solving the system of two linear equations:

\[
\begin{align*}
(2.0000)x + (0.6667)y &= 2.0000 \\
(1.0000)x + (0.3333)y &= 1.0000
\end{align*}
\]

If we subtract twice the second equation from the first, we obtain \((0.0001)y = 0.0000\) which yields the unique solution

\[
\begin{align*}
x &= 1.0000 \\
y &= 0.0000
\end{align*}
\]
Condition of a problem: modified example

Now consider the system

\[
\begin{align*}
(2.0000)x + (0.6666)y &= 2.0000 \\
(1.0000)x + (0.3333)y &= 1.0000
\end{align*}
\]

which differs from \((A)\) only in the fourth significant digit of the coefficient 0.6667.

This system has rank one
(the coefficients of the first equation are twice those of the second equation)
and so has an infinite number of solutions.

The system reduces to the equations

\[
\begin{align*}
x &= 1.0000 - (0.3333)\lambda \\
y &= \lambda
\end{align*}
\]

giving a solution for every possible choice of real number \(\lambda\).
Condition of a problem: modified example

Now consider the system

\[
(B) \quad \begin{array}{c}
(2.0000)x + (0.6666)y = 2.0000 \\
(1.0000)x + (0.3333)y = 1.0000
\end{array}
\]

which differs from \((A)\) only in the fourth significant digit of the coefficient 0.6667.

This system has rank one (the coefficients of the first equation are twice those of the second equation) and so has an infinite number of solutions.

The system reduces to the equations

\[
\begin{align*}
x &= 1.0000 - (0.3333)\lambda \\
y &= \lambda
\end{align*}
\]

giving a solution for every possible choice of real number \(\lambda\).
Condition of a problem: modified example

Now consider the system

\[
\begin{align*}
(B) & \quad (2.0000)x + (0.6666)y = 2.0000 \\
 & \quad (1.0000)x + (0.3333)y = 1.0000
\end{align*}
\]

which differs from \((A)\) only in the fourth significant digit of the coefficient 0.6667.

This system has rank one
(the coefficients of the first equation are twice those of the second equation)
and so has an infinite number of solutions.

The system reduces to the equations

\[
\begin{align*}
x & = 1.0000 - (0.3333)\lambda \\
y & = \lambda
\end{align*}
\]

giving a solution for every possible choice of real number \(\lambda\).
Condition of a problem: modified example

Now consider the system

\[
\begin{align*}
(B) & \quad (2.0000)x + (0.6666)y = 2.0000 \\
& \quad (1.0000)x + (0.3333)y = 1.0000
\end{align*}
\]

which differs from \((A)\) only in the fourth significant digit of the coefficient 0.6667.

This system has rank one
(the coefficients of the first equation are twice those of the second equation)
and so has an infinite number of solutions.

The system reduces to the equations

\[
\begin{align*}
x &= 1.0000 - (0.3333)\lambda \\
y &= \lambda
\end{align*}
\]

giving a solution for every possible choice of real number \(\lambda\).
Condition of a problem: modified example

Now consider the system

\[
\begin{align*}
(B) & \quad (2.0000)x + (0.6666)y = 2.0000 \\
 & \quad (1.0000)x + (0.3333)y = 1.0000
\end{align*}
\]

which differs from (A) only in the fourth significant digit of the coefficient 0.6667.

This system has rank one (the coefficients of the first equation are twice those of the second equation) and so has an infinite number of solutions.

The system reduces to the equations

\[
\begin{align*}
x &= 1.0000 - (0.3333)\lambda \\
y &= \lambda
\end{align*}
\]

giving a solution for every possible choice of real number \(\lambda \).
Condition of a problem
The point is that a “small” perturbation in a single coefficient of \((A)\) changes the problem from one with a unique solution to one with an infinity of solutions.

This is a mathematical property of the system \((A)\) which is completely independent of any algorithm used.

Definition
The condition of a problem \(p\) is a measure of the change in the solution \(s\) to a change in the problem \(p\).

More precisely, assume we have a way \(\|\|\) to measure the “size” \(\|p\|\) of \(p\).

Definition
If \(p\) is changed to \(p + \Delta p\), where \(\Delta p\) is small, and the new solution is \(s + \Delta s\), then the condition number of \(p\) is

\[
\text{cond}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|}{\|\Delta p\|}.
\]
Condition of a problem

The point is that a “small” perturbation in a single coefficient of \((A)\) changes the problem from one with a unique solution to one with an infinity of solutions.

This is a mathematical property of the system \((A)\) which is completely independent of any algorithm used.

Definition

The condition of a problem \(p\) is a measure of the change in the solution \(s\) to a change in the problem \(p\).

More precisely, assume we have a way \(\|\|\) to measure the “size” \(\|p\|\) of \(p\).

Definition

If \(p\) is changed to \(p + \Delta p\), where \(\Delta p\) is small, and the new solution is \(s + \Delta s\), then the condition number of \(p\) is

\[
\text{cond}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|}{\|\Delta p\|}.
\]
Condition of a problem

The point is that a “small” perturbation in a single coefficient of \((A)\) changes the problem from one with a unique solution to one with an infinity of solutions.

This is a mathematical property of the system \((A)\) which is completely independent of any algorithm used.

Definition

The condition of a problem \(p\) is a measure of the change in the solution \(s\) to a change in the problem \(p\).

More precisely, assume we have a way \(\| \|\) to measure the “size” \(\|p\|\) of \(p\).

Definition

If \(p\) is changed to \(p + \Delta p\), where \(\Delta p\) is small, and the new solution is \(s + \Delta s\), then the condition number of \(p\) is

\[
\text{cond}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|}{\|\Delta p\|}.
\]
Condition of a problem

The point is that a “small” perturbation in a single coefficient of \((A)\) changes the problem from one with a unique solution to one with an infinity of solutions.

This is a mathematical property of the system \((A)\) which is completely independent of any algorithm used.

Definition

The condition of a problem \(p\) is a measure of the change in the solution \(s\) to a change in the problem \(p\).

More precisely, assume we have a way \(\| \|\) to measure the “size” \(\| p \|\) of \(p\).

Definition

If \(p\) is changed to \(p + \Delta p\), where \(\Delta p\) is small, and the new solution is \(s + \Delta s\), then the condition number of \(p\) is

\[
\text{cond}(p) = \max_{\Delta p \neq 0} \frac{\| \Delta s \|}{\| \Delta p \|}.
\]
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

\[\text{cond}_{\text{rel}}(p) = \max_{\Delta p \neq 0} \frac{\| \Delta s \| / \| s \|}{\| \Delta p \| / \| p \|}. \]

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is well-conditioned. Otherwise, it is ill-conditioned.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves \(p \).
- This is a very general (and vague) definition and needs to be refined for different problem types.
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

$$\text{cond}_{\text{rel}}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|/\|s\|}{\|\Delta p\|/\|p\|}.$$

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is well-conditioned. Otherwise, it is ill-conditioned.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves p.
- This is a very general (and vague) definition and needs to be refined for different problem types.
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

$$\text{cond}_{rel}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|/\|s\|}{\|\Delta p\|/\|p\|}.$$

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is **well-conditioned**.

Otherwise, it is **ill-conditioned**.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves p.
- This is a very general (and vague) definition and needs to be refined for different problems.
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

\[
\text{cond}_{\text{rel}}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|/\|s\|}{\|\Delta p\|/\|p\|}.
\]

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is **well-conditioned**.
Otherwise, it is **ill-conditioned**.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves \(p \).
- This is a very general (and vague) definition and needs to be refined for different problem types.
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

\[\text{cond}_{\text{rel}}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|/\|s\|}{\|\Delta p\|/\|p\|}. \]

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is well-conditioned. Otherwise, it is ill-conditioned.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves \(p \).
- This is a very general (and vague) definition and needs to be refined for different problem types.
Relative Condition: a more useful definition

Definition

The relative condition of a problem is defined as

\[
\text{cond}_{\text{rel}}(p) = \max_{\Delta p \neq 0} \frac{\|\Delta s\|/\|s\|}{\|\Delta p\|/\|p\|}.
\]

This is a non-negative real number which measures the relative change in the solution due to a relative change in the problem data.

If this number is small, then the problem is well-conditioned. Otherwise, it is ill-conditioned.

Note

- The condition of a problem is a property of the problem and does not depend on the behaviour of the algorithm that solves \(p \).
- This is a very general (and vague) definition and needs to be refined for different problem types.
Evaluate given function $f(x)$ for any value of x

Example (Function Evaluation)

Suppose we want to evaluate a given function $f(x)$ for any value of x. We regard x as the problem data p and we want to see how the solution $s = f(x)$ changes with x. The relative condition for this problem is

$$\text{cond}_{\text{rel}}(p) = \left| \frac{(f(x + \delta x) - f(x))/f(x)}{\delta x / x} \right| = \left| \frac{x}{f(x)} \frac{f(x + \delta x) - f(x)}{\delta x} \right| \approx \left| \frac{x f'(x)}{f(x)} \right|,$$

for small δx.

♦
Evaluate given function $f(x)$ for any value of x

1. Let $f(x) = \frac{10}{1-x^2}$ so $f'(x) = 10(-1)(1-x^2)^{-2}(-2x) = \frac{20x}{(1-x^2)^2}$.

 Then f has relative condition
 \[
 \frac{2x^2}{|1-x^2|}.
 \]

 This problem is ill-conditioned for values of $|x|$ near 1 (why?).

 Notice that the relative condition changes with x.

2. $f(x) = \sqrt{x}$ has relative condition $\frac{1}{2}$ which means that calculating the square root is a well-conditioned problem because the change in the solution is actually smaller than the change in the problem.

 For example, to 32 significant digits,
 \[
 \sqrt{2.000000} = 1.4142135623730950488016887242097
 \]
 \[
 \sqrt{2.0000001} = 1.4142135977284336661873377512028
 \]

 Calculating $\text{cond}_{rel}(p)$ for these numbers gives ≈ 0.5 (check this yourself).
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\)
(a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))
\(x_1 = 1 + 10^{-2} = 1.01, x_2 = 1 - 10^{-2} = 0.99,\)
\(x_3 = 1 + 10^{-2}i = 1 + 0.01i, x_4 = 1 + 10^{-2}i = 1 - 0.01i.\)

These are four distinct roots, each 0.01 away from 1
(in the directions E, W, N and S respectively),
on the Argand diagram of complex numbers \(\mathbb{C}\).
A change of \(10^{-8}\) in the problem
has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\)
so the problem has a condition number \(10^{-2}/10^{-8} = 10^6.\)

This problem is ill-conditioned.
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\) (a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))
\[x_1 = 1 + 10^{-2} = 1.01, \quad x_2 = 1 - 10^{-2} = 0.99,\]
\[x_3 = 1 + 10^{-2}i = 1 + 0.01i, \quad x_4 = 1 + 10^{-2}i = 1 - 0.01i.\]

These are four distinct roots, each 0.01 away from 1 (in the directions E, W, N and S respectively), on the Argand diagram of complex numbers \(\mathbb{C}\).

A change of \(10^{-8}\) in the problem has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\) so the problem has a condition number \(10^{-2}/10^{-8} = 10^6\).

This problem is ill-conditioned.
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\) (a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))

\[
x_1 = 1 + 10^{-2} = 1.01, \quad x_2 = 1 - 10^{-2} = 0.99, \\
x_3 = 1 + 10^{-2}i = 1 + 0.01i, \quad x_4 = 1 + 10^{-2}i = 1 - 0.01i.
\]

These are four distinct roots, each 0.01 away from 1 (in the directions E, W, N and S respectively), on the Argand diagram of complex numbers \(\mathbb{C}\).

A change of \(10^{-8}\) in the problem has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\) so the problem has a condition number \(10^{-2}/10^{-8} = 10^6\).

This problem is ill-conditioned.
Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\) (a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))
\[x_1 = 1 + 10^{-2} = 1.01, \ x_2 = 1 - 10^{-2} = 0.99,\]
\[x_3 = 1 + 10^{-2}i = 1 + 0.01i, \ x_4 = 1 + 10^{-2}i = 1 - 0.01i.\]

These are four distinct roots, each 0.01 away from 1 (in the directions E, W, N and S respectively),
on the Argand diagram of complex numbers \(\mathbb{C}\).

A change of \(10^{-8}\) in the problem
has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\)
so the problem has a condition number \(10^{-2}/10^{-8} = 10^6\).

This problem is ill-conditioned.
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\) (a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))

\(x_1 = 1 + 10^{-2} = 1.01,\ x_2 = 1 - 10^{-2} = 0.99,\)
\(x_3 = 1 + 10^{-2}i = 1 + 0.01i,\ x_4 = 1 + 10^{-2}i = 1 - 0.01i.\)

These are four distinct roots, each 0.01 away from 1 (in the directions E, W, N and S respectively), on the Argand diagram of complex numbers \(\mathbb{C}\).

A change of \(10^{-8}\) in the problem has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\) so the problem has a condition number \(10^{-2}/10^{-8} = 10^6.\)

This problem is ill-conditioned.
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\)
(a single repeated root of multiplicity 4).
However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))
\(x_1 = 1 + 10^{-2} = 1.01, \ x_2 = 1 - 10^{-2} = 0.99, \ x_3 = 1 + 10^{-2}i = 1 + 0.01i, \ x_4 = 1 + 10^{-2}i = 1 - 0.01i.\)
These are four distinct roots, each 0.01 away from 1
(in the directions E, W, N and S respectively),
on the Argand diagram of complex numbers \(\mathbb{C}\).
A change of \(10^{-8}\) in the problem
has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\)
so the problem has a condition number \(10^{-2}/10^{-8} = 10^6.\)

This problem is ill-conditioned.
Root finding

Example (Root finding)

The roots of \((x - 1)^4 = 0\) are \(x_1 = x_2 = x_3 = x_4 = 1\)
(a single repeated root of multiplicity 4).

However, \((x - 1)^4 = 10^{-8}\) has roots which satisfy \((x - 1)^2 = \pm 10^{-4}\).

Hence \(x - 1 = \pm \sqrt{\pm 10^{-4}}\) and we get the roots (where we write \(i = \sqrt{-1}\))
\(x_1 = 1 + 10^{-2} = 1.01\), \(x_2 = 1 - 10^{-2} = 0.99\),
\(x_3 = 1 + 10^{-2}i = 1 + 0.01i\), \(x_4 = 1 + 10^{-2}i = 1 - 0.01i\).

These are four distinct roots, each 0.01 away from 1
(in the directions E, W, N and S respectively),
on the Argand diagram of complex numbers \(\mathbb{C}\).

A change of \(10^{-8}\) in the problem
has caused a change of \(10^{-2}\) in the solutions \(x_1, \ldots, x_4\)
so the problem has a condition number \(10^{-2}/10^{-8} = 10^6\).

This problem is ill-conditioned.
An unstable algorithm is one which gives accurate solutions for some instances of a problem and inaccurate solutions for others.

This is a description rather than a definition because stability means different things in different circumstances.

We now give some classic examples that illustrate instability and show how the instability may be eliminated.
An unstable algorithm is one which gives accurate solutions for some instances of a problem and inaccurate solutions for others.

This is a description rather than a definition because stability means different things in different circumstances.

We now give some classic examples that illustrate instability and show how the instability may be eliminated.
Stability

An unstable algorithm is one which gives accurate solutions for some instances of a problem and inaccurate solutions for others.

This is a description rather than a definition because stability means different things in different circumstances.

We now give some classic examples that illustrate instability and show how the instability may be eliminated.
Example: Roots of a Quadratic

Example (Roots of a Quadratic)

Calculate the two roots of \(ax^2 + bx + c = 0. \)

This has the solution \(x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \)

Let us consider the following code:

```python
import math
def roots(a, b, c):
    s = math.sqrt(b*b - 4.0*a*c)
    x1 = (-b + s) / (2.0*a)
    x2 = (-b - s) / (2.0*a)
    return (x1, x2)
```
Example: Roots of a Quadratic

Calculate the two roots of \(ax^2 + bx + c = 0 \).

This has the solution \(x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

Let us consider the following code:

```python
import math
def roots(a, b, c):
    s = math.sqrt(b*b - 4.0*a*c)
    x1 = (-b + s) / (2.0*a)
    x2 = (-b - s) / (2.0*a)
    return (x1, x2)
```
Example: Roots of a Quadratic

Example (Roots of a Quadratic)

Calculate the two roots of $ax^2 + bx + c = 0$.

This has the solution $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Let us consider the following code:

```python
import math
def roots(a, b, c):
s = math.sqrt(b*b - 4.0*a*c)
x1 = (-b + s) / (2.0*a)
x2 = (-b - s) / (2.0*a)
return (x1, x2)
```
Error depends on value of b

If this code is run with $a = 1.0$, $c = 2.0$ and *single precision* instead of the double precision suggest, we get the following results, for various values of b, rounded to a precision of 5 decimal digits:

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Computed x_1</th>
<th>True x_1</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2123</td>
<td>4.3781</td>
<td>-0.4171</td>
<td>-0.41708</td>
<td>0.004</td>
</tr>
<tr>
<td>52.123</td>
<td>52.046</td>
<td>-0.0385</td>
<td>-0.038399</td>
<td>2.9</td>
</tr>
<tr>
<td>1212.3</td>
<td>1212.3</td>
<td>0.0</td>
<td>-0.0016498</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The last result is completely wrong: 100% error.

The problem would appear to be the subtraction of nearly-equal numbers b and $\sqrt{b^2 - 4ac}$ when calculating x_1.

However, as we saw in Chapter 2, this indicates (propagation) errors in previous calculations, in this case s.
Error depends on value of b

If this code is run with $a = 1.0$, $c = 2.0$ and *single precision* instead of the double precision suggest, we get the following results, for various values of b, rounded to a precision of 5 decimal digits:

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Computed x_1</th>
<th>True x_1</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2123</td>
<td>4.3781</td>
<td>-0.4171</td>
<td>-0.41708</td>
<td>0.004</td>
</tr>
<tr>
<td>52.123</td>
<td>52.046</td>
<td>-0.0385</td>
<td>-0.038399</td>
<td>2.9</td>
</tr>
<tr>
<td>1212.3</td>
<td>1212.3</td>
<td>0.0</td>
<td>-0.0016498</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The last result is completely wrong: 100% error.

The problem would appear to be the subtraction of nearly-equal numbers b and $\sqrt{b^2 - 4ac}$ when calculating x_1.

However, as we saw in Chapter 2, this indicates (propagation) errors in previous calculations, in this case s.
Error depends on value of b

If this code is run with $a = 1.0$, $c = 2.0$ and single precision instead of the double precision suggest, we get the following results, for various values of b, rounded to a precision of 5 decimal digits:

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Computed x_1</th>
<th>True x_1</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2123</td>
<td>4.3781</td>
<td>-0.4171</td>
<td>-0.41708</td>
<td>0.004</td>
</tr>
<tr>
<td>52.123</td>
<td>52.046</td>
<td>-0.0385</td>
<td>-0.038399</td>
<td>2.9</td>
</tr>
<tr>
<td>1212.3</td>
<td>1212.3</td>
<td>0.0</td>
<td>-0.0016498</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The last result is completely wrong: 100% error.

The problem would appear to be the subtraction of nearly-equal numbers b and $\sqrt{b^2 - 4ac}$ when calculating x_1.

However, as we saw in Chapter 2, this indicates (propagation) errors in previous calculations, in this case s.
Error depends on value of b

If this code is run with $a = 1.0$, $c = 2.0$ and *single precision* instead of the double precision suggest, we get the following results, for various values of b, rounded to a precision of 5 decimal digits:

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Computed x_1</th>
<th>True x_1</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2123</td>
<td>4.3781</td>
<td>-0.4171</td>
<td>-0.41708</td>
<td>0.0004</td>
</tr>
<tr>
<td>52.123</td>
<td>52.046</td>
<td>-0.0385</td>
<td>-0.038399</td>
<td>2.9</td>
</tr>
<tr>
<td>1212.3</td>
<td>1212.3</td>
<td>0.0</td>
<td>-0.0016498</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The last result is completely wrong: 100% error.

The problem would appear to be the subtraction of nearly-equal numbers b and $\sqrt{b^2 - 4ac}$ when calculating x_1.

However, as we saw in Chapter 2, this indicates (propagation) errors in previous calculations, in this case s.

Jakub Mareček and Seán McGarraghy (UCD) Numerical Analysis and Software October 1, 2015 45 / 1
Error depends on value of b

If this code is run with $a = 1.0$, $c = 2.0$ and *single precision* instead of the double precision suggest, we get the following results, for various values of b, rounded to a precision of 5 decimal digits:

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Computed x_1</th>
<th>True x_1</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2123</td>
<td>4.3781</td>
<td>−0.4171</td>
<td>−0.41708</td>
<td>0.004</td>
</tr>
<tr>
<td>52.123</td>
<td>52.046</td>
<td>−0.0385</td>
<td>−0.038399</td>
<td>2.9</td>
</tr>
<tr>
<td>1212.3</td>
<td>1212.3</td>
<td>0.0</td>
<td>−0.0016498</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The last result is completely wrong: 100% error.

The problem would appear to be the subtraction of nearly-equal numbers b and $\sqrt{b^2 - 4ac}$ when calculating x_1.

However, as we saw in Chapter 2, this indicates (propagation) errors in previous calculations, in this case s.
Patching up the approach

\[ax^2 + bx + c \] has roots \(x_1, x_2 \), so it factorises as

\[ax^2 + bx + c = a(x - x_1)(x - x_2) = ax^2 - a(x_1 + x_2)x + ax_1x_2. \]

Comparing the \(x \) and constant coefficients gives

\[b = -a(x_1 + x_2) \quad \text{and} \quad c = ax_1x_2. \]

It follows that \(x_1x_2 = c/a \),
so we can avoid the subtraction operation.
Patching up the approach

\[ax^2 + bx + c \] has roots \(x_1, x_2 \), so it factorises as

\[ax^2 + bx + c = a(x - x_1)(x - x_2) = ax^2 - a(x_1 + x_2)x + ax_1x_2. \]

Comparing the \(x \) and constant coefficients gives

\[b = -a(x_1 + x_2) \quad \text{and} \quad c = ax_1x_2. \]

It follows that \(x_1x_2 = c/a \), so we can avoid the subtraction operation.
Patching up the approach

\[ax^2 + bx + c \] has roots \(x_1, x_2 \), so it factorises as

\[ax^2 + bx + c = a(x - x_1)(x - x_2) = ax^2 - a(x_1 + x_2)x + ax_1x_2. \]

Comparing the \(x \) and constant coefficients gives

\[b = -a(x_1 + x_2) \quad \text{and} \quad c = ax_1x_2. \]

It follows that \(x_1x_2 = c/a \), so we can avoid the subtraction operation.
Example: Evaluating e^x using its Taylor series expansion

Example (Evaluating e^x using its Taylor series expansion)

The Taylor series expansion of e^x is

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

If we use (a truncated form of) this series to calculate e^x to machine single precision we get the following results:

<table>
<thead>
<tr>
<th>x</th>
<th>Error</th>
<th>Rel.Err(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11.0000000</td>
<td>0.0008708</td>
<td>52.1360200</td>
</tr>
<tr>
<td>-10.0000000</td>
<td>0.0001139</td>
<td>2.5099170</td>
</tr>
<tr>
<td>1.0000000</td>
<td>0.0000002</td>
<td>0.0000001</td>
</tr>
<tr>
<td>10.0000000</td>
<td>0.0039063</td>
<td>0.0000002</td>
</tr>
</tbody>
</table>
Example: Evaluating e^x using its Taylor series expansion

Example (Evaluating e^x using its Taylor series expansion)

The Taylor series expansion of e^x is

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

If we use (a truncated form of) this series to calculate e^x to machine single precision we get the following results:

<table>
<thead>
<tr>
<th>x</th>
<th>Error</th>
<th>Rel.Err(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11.0000000</td>
<td>0.0008708</td>
<td>52.1360200</td>
</tr>
<tr>
<td>-10.0000000</td>
<td>0.0001139</td>
<td>2.5099170</td>
</tr>
<tr>
<td>1.0000000</td>
<td>0.0000002</td>
<td>0.0000001</td>
</tr>
<tr>
<td>10.0000000</td>
<td>0.0039063</td>
<td>0.0000002</td>
</tr>
</tbody>
</table>
Example: Evaluating e^x using its Taylor series expansion

It can be seen that this algorithm is very unstable for negative values of x. To avoid these negative values we note that $e^{-x} = 1/e^x$; so when x is negative we calculate $e^{|x|}$ and then $1/e^{|x|}$.
Example: Evaluating e^x using its Taylor series expansion

It can be seen that this algorithm is very unstable for negative values of x. To avoid these negative values we note that $e^{-x} = 1/e^x$; so when x is negative we calculate $e^{|x|}$ and then $1/e^{|x|}$.
Example: Evaluating e^x using its Taylor series expansion

It can be seen that this algorithm is very unstable for negative values of x. To avoid these negative values we note that $e^{-x} = 1/e^x$; so when x is negative we calculate $e^{|x|}$ and then $1/e^{|x|}$.
Stopping Rules

Often, one would like to stop the computation at some point.

Considering one can keep running many numerical methods ad infinitum, in principle, we need to build in some rule(s) to stop.

These are often called termination criteria or stopping rules.

Example

For example, an algorithm to calculate the sum $S = \sum_{i=1}^{n} |x_i|$ could sort the numbers by their absolute values, start with the largest absolute value, and stop once the absolute value drops below a threshold.
Stopping Rules

Often, one would like to *stop* the computation at some point.

Considering one can keep running many numerical methods ad infinitum, in principle, we need to build in some rule(s) to stop.

These are often called termination criteria or stopping rules.

Example

For example, an algorithm to calculate the sum \(S = \sum_{i=1}^{n} |x_i| \) could sort the numbers by their absolute values, start with the largest absolute value, and stop once the absolute value drops below a threshold.
Stopping Rules

Often, one would like to *stop* the computation at some point.

Considering one can keep running many numerical methods ad infinitum, in principle, we need to build in some rule(s) to stop.

These are often called termination criteria or stopping rules.

Example

For example, an algorithm to calculate the sum $S = \sum_{i=1}^{n} |x_i|$ could sort the numbers by their absolute values, start with the largest absolute value, and stop once the absolute value drops below a threshold.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense:

we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense: we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense: we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges. We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that \(\lim_{k \to \infty} f(x_k) = 0 \), so we can test explicitly for the closeness of \(f(x_k) \) to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know \(\lim_{k \to \infty} x_k \) (this is what the algorithm is trying to find) so we must test the sequence \((x_k)\) in the Cauchy sequence sense: we test for how close together are the successive approximations \(x_{k-1} \) and \(x_k \). That is, stop when \(\|x_{k+1} - x_k\| \leq \varepsilon_x \).

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the *Cauchy sequence* sense:

we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a *complete* metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense: we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense:

we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense:

we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know x?

In the case of zero-finding algorithms, we know that $\lim_{k \to \infty} f(x_k) = 0$, so we can test explicitly for the closeness of $f(x_k)$ to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know $\lim_{k \to \infty} x_k$ (this is what the algorithm is trying to find) so we must test the sequence (x_k) in the Cauchy sequence sense: we test for how close together are the successive approximations x_{k-1} and x_k. That is, stop when $\|x_{k+1} - x_k\| \leq \varepsilon_x$.

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
What if we don’t Know \(x \)?

In the case of zero-finding algorithms, we know that \(\lim_{k \to \infty} f(x_k) = 0 \), so we can test explicitly for the closeness of \(f(x_k) \) to 0.

However, in iterative algorithms for zero-finding, optimisation or any other purpose, we do not know \(\lim_{k \to \infty} x_k \) (this is what the algorithm is trying to find) so we must test the sequence \((x_k)\) in the Cauchy sequence sense:

we test for how close together are the successive approximations \(x_{k-1} \) and \(x_k \). That is, stop when \(\|x_{k+1} - x_k\| \leq \varepsilon_x \).

This is a valid thing to do in a complete metric space, where every Cauchy sequence converges.

We are lucky: we deal exclusively with complete metric spaces.
Testing closeness in a FP Number System

These mathematical stopping rules must be modified to take into account the effects of finite-precision floating point arithmetic.

A test that is too often seen in textbooks and amateur programs:

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-6} \text{ then stop}
\]

If \(|x_k| = 1000 \) then the floating point number spacing around \(x_k \) is \(\varepsilon_m \times |x_k| = 10^{-7} \times 10^3 = 10^{-4} \).

This means that the two floating point numbers \(x_k, x_{k-1} \) can never get closer than \(10^{-4} \) and so passing this test is impossible.

If this was the only test used in the algorithm then it would never stop.

If \(|x_k| = 0.001 \) then the floating point number spacing around \(x_k \) is \(10^{-7} \times 10^{-3} = 10^{-10} \) and so the test is valid but crude by a factor of \(10^4 \).
Testing closeness in a FP Number System

These mathematical stopping rules must be modified to take into account the effects of finite-precision floating point arithmetic.

A test that is too often seen in textbooks and amateur programs:

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-6} \text{ then stop}
\]

If \(|x_k| = 1000\) then the floating point number spacing around \(x_k\) is \(\varepsilon_m \times |x_k| = 10^{-7} \times 10^3 = 10^{-4}\).

This means that the two floating point numbers \(x_k, x_{k-1}\) can never get closer than \(10^{-4}\) and so passing this test is impossible.

If this was the only test used in the algorithm then it would never stop.

If \(|x_k| = 0.001\) then the floating point number spacing around \(x_k\) is \(10^{-7} \times 10^{-3} = 10^{-10}\) and so the test is valid but crude by a factor of \(10^4\).
Testing closeness in a FP Number System

These mathematical stopping rules must be modified to take into account the effects of finite-precision floating point arithmetic.

A test that is too often seen in textbooks and amateur programs:

\[
\text{if } \left| x_k - x_{k-1} \right| \leq 10^{-6} \quad \text{then stop}
\]

If \(|x_k| = 1000 \) then the floating point number spacing around \(x_k \) is

\[
\varepsilon_m \times |x_k| = 10^{-7} \times 10^3 = 10^{-4}.
\]

This means that the two floating point numbers \(x_k, x_{k-1} \) can never get closer than \(10^{-4} \) and so passing this test is impossible.

If this was the only test used in the algorithm then it would never stop.

If \(|x_k| = 0.001 \) then the floating point number spacing around \(x_k \) is

\[
10^{-7} \times 10^{-3} = 10^{-10}
\]

and so the test is valid but crude by a factor of \(10^4 \).
Testing closeness in a FP Number System

These mathematical stopping rules must be modified to take into account the effects of finite-precision floating point arithmetic.

A test that is too often seen in textbooks and amateur programs:

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-6} \text{ then stop}
\]

If \(|x_k| = 1000 \) then the floating point number spacing around \(x_k \) is \(\varepsilon_m \times |x_k| = 10^{-7} \times 10^3 = 10^{-4} \).

This means that the two floating point numbers \(x_k, x_{k-1} \) can never get closer than \(10^{-4} \) and so passing this test is impossible.

If this was the only test used in the algorithm then it would never stop.

If \(|x_k| = 0.001 \) then the floating point number spacing around \(x_k \) is \(10^{-7} \times 10^{-3} = 10^{-10} \) and so the test is valid but crude by a factor of \(10^4 \).
Testing closeness in a FP Number System

These mathematical stopping rules must be modified to take into account the effects of finite-precision floating point arithmetic.

A test that is too often seen in textbooks and amateur programs:

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-6} \text{ then stop}
\]

If \(|x_k| = 1000 \) then the floating point number spacing around \(x_k \) is \(\varepsilon_m \times |x_k| = 10^{-7} \times 10^3 = 10^{-4} \).

This means that the two floating point numbers \(x_k, x_{k-1} \) can never get closer than \(10^{-4} \) and so passing this test is impossible.

If this was the only test used in the algorithm then it would never stop.

If \(|x_k| = 0.001 \) then the floating point number spacing around \(x_k \) is \(10^{-7} \times 10^{-3} = 10^{-10} \) and so the test is valid but crude by a factor of \(10^4 \).
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FP Number System: a better approach

This example shows that we must account for floating point number spacing when choosing ε_x.

We do this by making sure that the test never requires two numbers to be closer than the number spacing around x_k, which is $\varepsilon_m |x_k|$.

Thus, the test

$$\text{if } |x_k - x_{k-1}| \leq 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

is valid for all magnitudes of x_k.

The floating point number 4.0 in the test is a safety factor.

This test ensures that we get almost full precision, i.e., the last two terms of the sequence are as close as they can possibly be in the floating point number system being used.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \text{ then stop} \quad (*)$$

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \text{ then stop}$$

Also, the test correctly deals with ε set too small.

Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \text{ stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

$(*)$ takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use $(*)$ when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \text{ then stop} \quad (\star)$$

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \text{ then stop}$$

Also, the test correctly deals with ε set too small.

Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \text{ stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

(\star) takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use (\star) when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \quad \text{then stop} \quad (*)$$

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \quad \text{then stop}$$

Also, the test correctly deals with ε set too small.

Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \quad \text{stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

$(*)$ takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use $(*)$ when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \text{ then stop} \quad (\ast)$$

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \text{ then stop}$$

Also, the test correctly deals with ε set too small.

Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \text{ stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

$$(\ast)$$ takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use $$(\ast)$$ when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation \(\varepsilon \) to the limit will suffice. This is elegantly handled by:

\[
\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \quad \text{then stop}
\] (*)

To see how this works, suppose \(|x_k| = 0.1 \) and we want to stop when successive terms get within \(10^{-3} \) of each other. Set \(\varepsilon = 10^{-3} \) and the test becomes

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \quad \text{then stop}
\]

Also, the test correctly deals with \(\varepsilon \) set too small.

Suppose \(\varepsilon = 10^{-10} \), an impossible requirement because the machine spacing is \(10^{-7} \times 10^{-1} = 10^{-8} \). The test is now

\[
\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \quad \text{stop}
\]

and \(4.01 \times 10^{-8} \) is greater than the spacing about \(x_k = 10^{-1} \).

(*) takes account both of the user's desired tolerance and the floating point number spacing at the relevant part of the number line.

Use (*) when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \text{ then stop}$$

(*)

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \text{ then stop}$$

Also, the test correctly deals with ε set too small. Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \text{ stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

(*) takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use (*) when implementing any numerical algorithm that uses a tolerance test.
Testing closeness in a FPNS: an improved flexible approach

Sometimes we may not need convergence to full precision because a crude approximation ε to the limit will suffice. This is elegantly handled by:

$$\text{if } |x_k - x_{k-1}| \leq \varepsilon + 4.0 \times \varepsilon_m \times |x_k| \quad \text{then stop} \quad (\star)$$

To see how this works, suppose $|x_k| = 0.1$ and we want to stop when successive terms get within 10^{-3} of each other. Set $\varepsilon = 10^{-3}$ and the test becomes

$$\text{if } |x_k - x_{k-1}| \leq 10^{-3} + 4.0 \times 10^{-7} \times 10^{-1} \approx 10^{-3} \quad \text{then stop}$$

Also, the test correctly deals with ε set too small.

Suppose $\varepsilon = 10^{-10}$, an impossible requirement because the machine spacing is $10^{-7} \times 10^{-1} = 10^{-8}$. The test is now

$$\text{if } |x_k - x_{k-1}| \leq 10^{-10} + 4.0 \times 10^{-7} \times 10^{-1} = 4.01 \times 10^{-8} \quad \text{stop}$$

and 4.01×10^{-8} is greater than the spacing about $x_k = 10^{-1}$.

(\star) takes account both of the user’s desired tolerance and the floating point number spacing at the relevant part of the number line.

Use (\star) when implementing any numerical algorithm that uses a tolerance test.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called maxits in our algorithms later, and wrap the algorithm inside a “for $k := 1$ to maxits” loop, thus ensuring no more than maxits iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called \textit{maxits} in our algorithms later, and wrap the algorithm inside a “\texttt{for } k := 1 \text{ to } \textit{maxits}$$” loop, thus ensuring no more than \textit{maxits} iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called maxits in our algorithms later, and wrap the algorithm inside a “for $k := 1$ to maxits” loop, thus ensuring no more than maxits iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes. This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called \textit{maxits} in our algorithms later, and wrap the algorithm inside a “for $k := 1$ to \textit{maxits}” loop, thus ensuring no more than \textit{maxits} iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called maxits in our algorithms later, and wrap the algorithm inside a “for $k := 1$ to maxits” loop, thus ensuring no more than maxits iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called maxits in our algorithms later, and wrap the algorithm inside a “for \(k := 1 \) to maxits” loop, thus ensuring no more than maxits iterations are performed.
Maximum iterations tests

It may happen that an iterative algorithm may not pass a tolerance test in a “reasonable” time for our purposes.

This may indicate some effect such as cycling or divergence, or it may simply mean convergence is happening too slowly for our algorithm to pass a tolerance test in the time we have given it.

To prevent an algorithm running for longer than we want to, we generally pick a maximum number of iterations we will allow the algorithm to run for, called $maxits$ in our algorithms later, and wrap the algorithm inside a “for $k := 1$ to $maxits$” loop, thus ensuring no more than $maxits$ iterations are performed.
A Summary

Numbers have finite precision.

With floating-point numbers, rules of algebra do not always work.

Where could you reach the limits of machine epsilon, mantissa precision, or largest and smallest floating point numbers?

Subtraction of nearly-equal numbers and division by small numbers, may cause difficulties, as they may lead to loss of precision.

Use a sensible tolerance test.
A Summary

Numbers have finite precision.

With floating-point numbers, rules of algebra do not always work.

Where could you reach the limits of machine epsilon, mantissa precision, or largest and smallest floating point numbers?

Subtraction of nearly-equal numbers and division by small numbers, may cause difficulties, as they may lead to loss of precision.

Use a sensible tolerance test.
A Summary

Numbers have finite precision.

With floating-point numbers, rules of algebra do not always work.

Where could you reach the limits of machine epsilon, mantissa precision, or largest and smallest floating point numbers?

Subtraction of nearly-equal numbers and division by small numbers, may cause difficulties, as they may lead to loss of precision.

Use a sensible tolerance test.
A Summary

Numbers have finite precision.

With floating-point numbers, rules of algebra do not always work.

Where could you reach the limits of machine epsilon, mantissa precision, or largest and smallest floating point numbers?

Subtraction of nearly-equal numbers and division by small numbers, may cause difficulties, as they may lead to loss of precision.

Use a sensible tolerance test.
A Summary

Numbers have finite precision.

With floating-point numbers, rules of algebra do not always work.

Where could you reach the limits of machine epsilon, mantissa precision, or largest and smallest floating point numbers?

Subtraction of nearly-equal numbers and division by small numbers, may cause difficulties, as they may lead to loss of precision.

Use a sensible tolerance test.
Stepping Back

One should also note that many approximations may occur \textit{before} a calculation begins.

Modelling may be approximate in that it omits some features to make it easier to work with, e.g., assume 0 transaction costs in equity trading, independence of default in constructing mortgage-backed securities, sinusoidal demands and currents in power systems, etc.

Empirical measurements accuracy of data may be affected by limited precision of measuring instruments, small sample size, systematic bias, etc.

These issues may be outside of our scope of this module, but are at least as important as the issues of numerical analysis.
Stepping Back

One should also note that many approximations may occur before a calculation begins.

Modelling may be approximate in that it omits some features to make it easier to work with, e.g., assume 0 transaction costs in equity trading, independence of default in constructing mortgage-backed securities, sinusoidal demands and currents in power systems, etc.

Empirical measurements accuracy of data may be affected by limited precision of measuring instruments, small sample size, systematic bias, etc.

These issues may be outside of our scope of this module, but are at least as important as the issues of numerical analysis.